Using explainable AI to investigate electrocardiogram changes during healthy aging -- from expert features to raw signals
- URL: http://arxiv.org/abs/2310.07463v2
- Date: Mon, 22 Apr 2024 15:04:18 GMT
- Title: Using explainable AI to investigate electrocardiogram changes during healthy aging -- from expert features to raw signals
- Authors: Gabriel Ott, Yannik Schaubelt, Juan Miguel Lopez Alcaraz, Wilhelm Haverkamp, Nils Strodthoff,
- Abstract summary: We employ a deep-learning model and a tree-based model to analyze ECG data from a robust dataset of healthy individuals across varying ages.
Our analysis with tree-based classifiers reveals age-related declines in inferred breathing rates.
These findings shed new light on age-related ECG changes, offering insights that transcend traditional feature-based approaches.
- Score: 0.8108972030676012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiovascular diseases remain the leading global cause of mortality. Age is an important covariate whose effect is most easily investigated in a healthy cohort to properly distinguish the former from disease-related changes. Traditionally, most of such insights have been drawn from the analysis of electrocardiogram (ECG) feature changes in individuals as they age. However, these features, while informative, may potentially obscure underlying data relationships. In this paper we present the following contributions: (1) We employ a deep-learning model and a tree-based model to analyze ECG data from a robust dataset of healthy individuals across varying ages in both raw signals and ECG feature format. (2) We use explainable AI methods to identify the most discriminative ECG features across age groups.(3) Our analysis with tree-based classifiers reveals age-related declines in inferred breathing rates and identifies notably high SDANN values as indicative of elderly individuals, distinguishing them from younger adults. (4) Furthermore, the deep-learning model underscores the pivotal role of the P-wave in age predictions across all age groups, suggesting potential changes in the distribution of different P-wave types with age. These findings shed new light on age-related ECG changes, offering insights that transcend traditional feature-based approaches.
Related papers
- DE-PADA: Personalized Augmentation and Domain Adaptation for ECG Biometrics Across Physiological States [6.857781758172894]
We propose DE-PADA, a Dual Expert model with Personalized Augmentation and Domain Adaptation.
The model is trained primarily on resting-state data without direct exposure to their exercise data.
Experiments on the University of Toronto ECG Database demonstrate the model's effectiveness.
arXiv Detail & Related papers (2025-02-07T14:46:13Z) - iTARGET: Interpretable Tailored Age Regression for Grouped Epigenetic Traits [0.0]
We propose a novel two-phase algorithm to accurately predict chronological age from DNA methylation patterns.
Our method not only improves prediction accuracy but also reveals key age-related CpG sites, detects age-specific changes in aging rates, and identifies pairwise interactions between CpG sites.
Experimental results show that our approach outperforms traditional epigenetic clocks and machine learning models.
arXiv Detail & Related papers (2025-01-04T23:06:46Z) - Evaluating the Efficacy of Vectocardiographic and ECG Parameters for Efficient Tertiary Cardiology Care Allocation Using Decision Tree Analysis [0.0]
Use real word data to evaluate the performance of the electrocardiographic markers of GEH as features in a machine learning model.
The GEH parameters turned out to have statistical significance for this population.
arXiv Detail & Related papers (2024-12-16T15:01:53Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
Robust Electrocardiogram Prediction [20.8603653664403]
We propose a physiologically-inspired data augmentation method to improve performance and increase the robustness of heart disease detection based on ECG signals.
We obtain augmented samples by perturbing the data distribution towards other classes along the geodesic in Wasserstein space.
Learning from 12-lead ECG signals, our model is able to distinguish five categories of cardiac conditions.
arXiv Detail & Related papers (2022-08-02T03:14:13Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
We propose a novel factored attention and embedding model (termed FAE-Gen) for the unstructured-view topic-related ultrasound report generation.
The proposed FAE-Gen mainly consists of two modules, i.e., view-guided factored attention and topic-oriented factored embedding, which capture the homogeneous and heterogeneous morphological characteristic across different views.
arXiv Detail & Related papers (2022-03-12T15:24:03Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Age-Net: An MRI-Based Iterative Framework for Brain Biological Age
Estimation [18.503467872057424]
The concept of biological age (BA) is hard to grasp mainly due to the lack of a clearly defined reference standard.
We propose a new imaging-based framework for organ-specific BA estimation.
arXiv Detail & Related papers (2020-09-22T19:04:02Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.