PtychoDV: Vision Transformer-Based Deep Unrolling Network for
Ptychographic Image Reconstruction
- URL: http://arxiv.org/abs/2310.07504v2
- Date: Wed, 6 Mar 2024 22:55:31 GMT
- Title: PtychoDV: Vision Transformer-Based Deep Unrolling Network for
Ptychographic Image Reconstruction
- Authors: Weijie Gan, Qiuchen Zhai, Michael Thompson McCann, Cristina Garcia
Cardona, Ulugbek S. Kamilov, Brendt Wohlberg
- Abstract summary: PtychoDV is a novel deep model-based network designed for efficient, high-quality ptychographic image reconstruction.
Results on simulated data demonstrate that PtychoDV is capable of outperforming existing deep learning methods for this problem.
- Score: 12.780951605821238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ptychography is an imaging technique that captures multiple overlapping
snapshots of a sample, illuminated coherently by a moving localized probe. The
image recovery from ptychographic data is generally achieved via an iterative
algorithm that solves a nonlinear phase retrieval problem derived from measured
diffraction patterns. However, these iterative approaches have high
computational cost. In this paper, we introduce PtychoDV, a novel deep
model-based network designed for efficient, high-quality ptychographic image
reconstruction. PtychoDV comprises a vision transformer that generates an
initial image from the set of raw measurements, taking into consideration their
mutual correlations. This is followed by a deep unrolling network that refines
the initial image using learnable convolutional priors and the ptychography
measurement model. Experimental results on simulated data demonstrate that
PtychoDV is capable of outperforming existing deep learning methods for this
problem, and significantly reduces computational cost compared to iterative
methodologies, while maintaining competitive performance.
Related papers
- PtychoFormer: A Transformer-based Model for Ptychographic Phase Retrieval [9.425754476649796]
We present a hierarchical transformer-based model for data-driven single-shot ptychographic phase retrieval.
Our model exhibits tolerance to sparsely scanned diffraction patterns and achieves up to 3600 times faster imaging speed than the extended ptychographic iterative engine (ePIE)
arXiv Detail & Related papers (2024-10-22T19:26:05Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
We develop a data-driven approach to model the saturated pixels by a learned latent map.
Based on the new model, the non-blind deblurring task can be formulated into a maximum a posterior (MAP) problem.
To estimate high-quality deblurred images without amplified artifacts, we develop a prior estimation network.
arXiv Detail & Related papers (2023-08-10T12:53:30Z) - A Deep Generative Approach to Oversampling in Ptychography [9.658250977094562]
A major drawback of ptychography is the long data acquisition time.
We propose complementing sparsely acquired or undersampled data with data sampled from a deep generative network.
Because the deep generative network is pre-trained and its output can be computed as we collect data, the experimental data and the time to acquire the data can be reduced.
arXiv Detail & Related papers (2022-07-28T22:02:01Z) - Compressive Ptychography using Deep Image and Generative Priors [9.658250977094562]
Ptychography is a well-established coherent diffraction imaging technique that enables non-invasive imaging of samples at a nanometer scale.
One major limitation of ptychography is the long data acquisition time due to mechanical scanning of the sample.
We propose a generative model combining deep image priors with deep generative priors.
arXiv Detail & Related papers (2022-05-05T02:18:26Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - Real-time sparse-sampled Ptychographic imaging through deep neural
networks [3.3351024234383946]
A ptychography reconstruction is achieved by means of solving a complex inverse problem that imposes constraints both on the acquisition and on the analysis of the data.
We propose PtychoNN, a novel approach to solve the ptychography reconstruction problem based on deep convolutional neural networks.
arXiv Detail & Related papers (2020-04-15T23:43:17Z) - u-net CNN based fourier ptychography [5.46367622374939]
We propose a new retrieval algorithm that is based on convolutional neural networks.
Experiments demonstrate that our model achieves better reconstruction results and is more robust under system aberrations.
arXiv Detail & Related papers (2020-03-16T22:48:44Z) - Self-Supervised Linear Motion Deblurring [112.75317069916579]
Deep convolutional neural networks are state-of-the-art for image deblurring.
We present a differentiable reblur model for self-supervised motion deblurring.
Our experiments demonstrate that self-supervised single image deblurring is really feasible.
arXiv Detail & Related papers (2020-02-10T20:15:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.