PtychoFormer: A Transformer-based Model for Ptychographic Phase Retrieval
- URL: http://arxiv.org/abs/2410.17377v1
- Date: Tue, 22 Oct 2024 19:26:05 GMT
- Title: PtychoFormer: A Transformer-based Model for Ptychographic Phase Retrieval
- Authors: Ryuma Nakahata, Shehtab Zaman, Mingyuan Zhang, Fake Lu, Kenneth Chiu,
- Abstract summary: We present a hierarchical transformer-based model for data-driven single-shot ptychographic phase retrieval.
Our model exhibits tolerance to sparsely scanned diffraction patterns and achieves up to 3600 times faster imaging speed than the extended ptychographic iterative engine (ePIE)
- Score: 9.425754476649796
- License:
- Abstract: Ptychography is a computational method of microscopy that recovers high-resolution transmission images of samples from a series of diffraction patterns. While conventional phase retrieval algorithms can iteratively recover the images, they require oversampled diffraction patterns, incur significant computational costs, and struggle to recover the absolute phase of the sample's transmission function. Deep learning algorithms for ptychography are a promising approach to resolving the limitations of iterative algorithms. We present PtychoFormer, a hierarchical transformer-based model for data-driven single-shot ptychographic phase retrieval. PtychoFormer processes subsets of diffraction patterns, generating local inferences that are seamlessly stitched together to produce a high-quality reconstruction. Our model exhibits tolerance to sparsely scanned diffraction patterns and achieves up to 3600 times faster imaging speed than the extended ptychographic iterative engine (ePIE). We also propose the extended-PtychoFormer (ePF), a hybrid approach that combines the benefits of PtychoFormer with the ePIE. ePF minimizes global phase shifts and significantly enhances reconstruction quality, achieving state-of-the-art phase retrieval in ptychography.
Related papers
- Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - PtychoDV: Vision Transformer-Based Deep Unrolling Network for
Ptychographic Image Reconstruction [12.780951605821238]
PtychoDV is a novel deep model-based network designed for efficient, high-quality ptychographic image reconstruction.
Results on simulated data demonstrate that PtychoDV is capable of outperforming existing deep learning methods for this problem.
arXiv Detail & Related papers (2023-10-11T14:01:36Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
We develop a data-driven approach to model the saturated pixels by a learned latent map.
Based on the new model, the non-blind deblurring task can be formulated into a maximum a posterior (MAP) problem.
To estimate high-quality deblurred images without amplified artifacts, we develop a prior estimation network.
arXiv Detail & Related papers (2023-08-10T12:53:30Z) - Unfolding-Aided Bootstrapped Phase Retrieval in Optical Imaging [24.59954532409386]
Phase retrieval in optical imaging refers to the recovery of a complex signal from phaseless data.
The hybrid approach of model-driven network or deep unfolding has emerged as an effective alternative.
This paper presents an overview of algorithms and applications of deep unfolding for bootstrapped - regardless of near, middle, and far zones.
arXiv Detail & Related papers (2022-03-03T13:00:07Z) - Deep Iterative Phase Retrieval for Ptychography [13.49645012479288]
In order to reconstruct an object from its diffraction pattern, the inverse Fourier transform must be computed.
In this work we consider ptychography, a sub-field of diffractive imaging, where objects are reconstructed from multiple overlapping diffraction images.
We propose an augmentation of existing iterative phase retrieval algorithms with a neural network designed for refining the result of each iteration.
arXiv Detail & Related papers (2022-02-17T09:13:35Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
We propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm.
Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance.
arXiv Detail & Related papers (2021-03-01T19:19:38Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - Real-time sparse-sampled Ptychographic imaging through deep neural
networks [3.3351024234383946]
A ptychography reconstruction is achieved by means of solving a complex inverse problem that imposes constraints both on the acquisition and on the analysis of the data.
We propose PtychoNN, a novel approach to solve the ptychography reconstruction problem based on deep convolutional neural networks.
arXiv Detail & Related papers (2020-04-15T23:43:17Z) - u-net CNN based fourier ptychography [5.46367622374939]
We propose a new retrieval algorithm that is based on convolutional neural networks.
Experiments demonstrate that our model achieves better reconstruction results and is more robust under system aberrations.
arXiv Detail & Related papers (2020-03-16T22:48:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.