Learning a Cross-modality Anomaly Detector for Remote Sensing Imagery
- URL: http://arxiv.org/abs/2310.07511v2
- Date: Tue, 10 Sep 2024 04:52:17 GMT
- Title: Learning a Cross-modality Anomaly Detector for Remote Sensing Imagery
- Authors: Jingtao Li, Xinyu Wang, Hengwei Zhao, Liangpei Zhang, Yanfei Zhong,
- Abstract summary: A remote sensing anomaly detector can find objects deviating from the background as potential targets for Earth monitoring.
Current anomaly detectors aim to learn the certain background distribution, the trained model cannot be transferred to unseen images.
This study exploits the learning target conversion from the varying background distribution to the consistent deviation metric.
- Score: 21.444315419064882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing anomaly detector can find the objects deviating from the background as potential targets for Earth monitoring. Given the diversity in earth anomaly types, designing a transferring model with cross-modality detection ability should be cost-effective and flexible to new earth observation sources and anomaly types. However, the current anomaly detectors aim to learn the certain background distribution, the trained model cannot be transferred to unseen images. Inspired by the fact that the deviation metric for score ranking is consistent and independent from the image distribution, this study exploits the learning target conversion from the varying background distribution to the consistent deviation metric. We theoretically prove that the large-margin condition in labeled samples ensures the transferring ability of learned deviation metric. To satisfy this condition, two large margin losses for pixel-level and feature-level deviation ranking are proposed respectively. Since the real anomalies are difficult to acquire, anomaly simulation strategies are designed to compute the model loss. With the large-margin learning for deviation metric, the trained model achieves cross-modality detection ability in five modalities including hyperspectral, visible light, synthetic aperture radar (SAR), infrared and low-light in zero-shot manner.
Related papers
- Online-Adaptive Anomaly Detection for Defect Identification in Aircraft Assembly [4.387337528923525]
Anomaly detection deals with detecting deviations from established patterns within data.
We propose a novel framework for online-adaptive anomaly detection using transfer learning.
Experimental results showcase a detection accuracy exceeding 0.975, outperforming the state-of-the-art ET-NET approach.
arXiv Detail & Related papers (2024-06-18T15:11:44Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - Detecting Out-Of-Distribution Earth Observation Images with Diffusion Models [2.1178416840822027]
We show that the reconstruction error of diffusion models can effectively serve as unsupervised out-of-distribution detectors for remote sensing images.
We introduce ODEED, a novel reconstruction-based scorer using the probability-flow ODE of diffusion models.
We aim to pave the way towards better use of generative models for anomaly detection in remote sensing.
arXiv Detail & Related papers (2024-04-19T07:07:36Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
We propose emphProjection Regret (PR), an efficient novelty detection method that mitigates the bias of non-semantic information.
PR computes the perceptual distance between the test image and its diffusion-based projection to detect abnormality.
Extensive experiments demonstrate that PR outperforms the prior art of generative-model-based novelty detection methods by a significant margin.
arXiv Detail & Related papers (2023-12-05T09:44:47Z) - One-Step Detection Paradigm for Hyperspectral Anomaly Detection via
Spectral Deviation Relationship Learning [17.590080772567678]
Hyperspectral anomaly detection involves identifying the targets that deviate spectrally from their surroundings.
The current deep detection models are optimized to complete a proxy task, such as background reconstruction or generation.
In this paper, an unsupervised transferred direct detection model is proposed, which is optimized directly for the anomaly detection task.
arXiv Detail & Related papers (2023-03-22T06:41:09Z) - CRADL: Contrastive Representations for Unsupervised Anomaly Detection
and Localization [2.8659934481869715]
Unsupervised anomaly detection in medical imaging aims to detect and localize arbitrary anomalies without requiring anomalous data during training.
Most current state-of-the-art methods use latent variable generative models operating directly on the images.
We propose CRADL whose core idea is to model the distribution of normal samples directly in the low-dimensional representation space of an encoder trained with a contrastive pretext-task.
arXiv Detail & Related papers (2023-01-05T16:07:49Z) - Lossy Compression for Robust Unsupervised Time-Series Anomaly Detection [4.873362301533825]
We propose a Lossy Causal Temporal Convolutional Neural Network Autoencoder for anomaly detection.
Our framework uses a rate-distortion loss and an entropy bottleneck to learn a compressed latent representation for the task.
arXiv Detail & Related papers (2022-12-05T14:29:16Z) - ReDFeat: Recoupling Detection and Description for Multimodal Feature
Learning [51.07496081296863]
We recouple independent constraints of detection and description of multimodal feature learning with a mutual weighting strategy.
We propose a detector that possesses a large receptive field and is equipped with learnable non-maximum suppression layers.
We build a benchmark that contains cross visible, infrared, near-infrared and synthetic aperture radar image pairs for evaluating the performance of features in feature matching and image registration tasks.
arXiv Detail & Related papers (2022-05-16T04:24:22Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.