In-Context Unlearning: Language Models as Few Shot Unlearners
- URL: http://arxiv.org/abs/2310.07579v4
- Date: Thu, 6 Jun 2024 06:31:08 GMT
- Title: In-Context Unlearning: Language Models as Few Shot Unlearners
- Authors: Martin Pawelczyk, Seth Neel, Himabindu Lakkaraju,
- Abstract summary: We propose a new class of unlearning methods for Large Language Models (LLMs)
This method unlearns instances from the model by simply providing specific kinds of inputs in context, without the need to update model parameters.
Our experimental results demonstrate that in-context unlearning performs on par with, or in some cases outperforms other state-of-the-art methods that require access to model parameters.
- Score: 27.962361828354716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning, the study of efficiently removing the impact of specific training instances on a model, has garnered increased attention in recent years due to regulatory guidelines such as the \emph{Right to be Forgotten}. Achieving precise unlearning typically involves fully retraining the model and is computationally infeasible in case of very large models such as Large Language Models (LLMs). To this end, recent work has proposed several algorithms which approximate the removal of training data without retraining the model. These algorithms crucially rely on access to the model parameters in order to update them, an assumption that may not hold in practice due to computational constraints or having only query access to the LLMs. In this work, we propose a new class of unlearning methods for LLMs called ``In-Context Unlearning.'' This method unlearns instances from the model by simply providing specific kinds of inputs in context, without the need to update model parameters. To unlearn specific training instances, we present these instances to the LLMs at inference time along with labels that differ from their ground truth. Our experimental results demonstrate that in-context unlearning performs on par with, or in some cases outperforms other state-of-the-art methods that require access to model parameters, effectively removing the influence of specific instances on the model while preserving test accuracy.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Unlearnable Algorithms for In-context Learning [36.895152458323764]
In this paper, we focus on efficient unlearning methods for the task adaptation phase of a pretrained large language model.
We observe that an LLM's ability to do in-context learning for task adaptation allows for efficient exact unlearning of task adaptation training data.
We propose a new holistic measure of unlearning cost which accounts for varying inference costs.
arXiv Detail & Related papers (2024-02-01T16:43:04Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
Large Language Models (LLMs) have become a feasible solution for handling tasks in various domains.
In this paper, we introduce how to fine-tune a LLM model that can be privately deployed for content moderation.
arXiv Detail & Related papers (2023-10-05T09:09:44Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - On the Necessity of Auditable Algorithmic Definitions for Machine
Unlearning [13.149070833843133]
Machine unlearning, i.e. having a model forget about some of its training data, has become increasingly important as privacy legislation promotes variants of the right-to-be-forgotten.
We first show that the definition that underlies approximate unlearning, which seeks to prove the approximately unlearned model is close to an exactly retrained model, is incorrect because one can obtain the same model using different datasets.
We then turn to exact unlearning approaches and ask how to verify their claims of unlearning.
arXiv Detail & Related papers (2021-10-22T16:16:56Z) - Certifiable Machine Unlearning for Linear Models [1.484852576248587]
Machine unlearning is the task of updating machine learning (ML) models after a subset of the training data they were trained on is deleted.
We present an experimental study of the three state-of-the-art approximate unlearning methods for linear models.
arXiv Detail & Related papers (2021-06-29T05:05:58Z) - Model-agnostic and Scalable Counterfactual Explanations via
Reinforcement Learning [0.5729426778193398]
We propose a deep reinforcement learning approach that transforms the optimization procedure into an end-to-end learnable process.
Our experiments on real-world data show that our method is model-agnostic, relying only on feedback from model predictions.
arXiv Detail & Related papers (2021-06-04T16:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.