Speeding Up Squeezing with a Periodically Driven Dicke Model
- URL: http://arxiv.org/abs/2310.07694v2
- Date: Fri, 12 Apr 2024 19:43:51 GMT
- Title: Speeding Up Squeezing with a Periodically Driven Dicke Model
- Authors: Jarrod T. Reilly, Simon B. Jäger, John Drew Wilson, John Cooper, Sebastian Eggert, Murray J. Holland,
- Abstract summary: We present a simple and effective method to create highly entangled spin states on a faster timescale than that of the commonly employed one-axis twisting (OAT) model.
We demonstrate that by periodically driving the Dicke Hamiltonian at a resonance frequency, the system effectively becomes a two-axis countertwisting Hamiltonian which is known to quickly create Heisenberg limit scaled entangled states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a simple and effective method to create highly entangled spin states on a faster timescale than that of the commonly employed one-axis twisting (OAT) model. We demonstrate that by periodically driving the Dicke Hamiltonian at a resonance frequency, the system effectively becomes a two-axis countertwisting Hamiltonian which is known to quickly create Heisenberg limit scaled entangled states. For these states we show that simple quadrature measurements can saturate the ultimate precision limit for parameter estimation determined by the quantum Cram\'er-Rao bound. An example experimental realization of the periodically driven scheme is discussed with the potential to quickly generate momentum entanglement in a recently described experimental vertical cavity system. We analyze effects of collective dissipation in this vertical cavity system and find that our squeezing protocol can be more robust than the previous realization of OAT.
Related papers
- Prethermalization in the PXP Model under Continuous Quasiperiodic Driving [0.0]
We investigate the dynamics of a quasiperiodically driven Rydberg atom chain in the strong Rydberg blockage regime.
Even without driving, the PXP model exhibits many-body scarring and resultant persistent oscillations.
Our results demonstrate that continuous quasi-periodic drive protocols can provide a promising route to realize prethermal phases of matter.
arXiv Detail & Related papers (2024-06-03T15:30:02Z) - Dicke State Generation and Extreme Spin Squeezing via Rapid Adiabatic Passage [0.0]
We propose a rapid adiabatic passage scheme on the Dicke state basis.
The method permits to drive Dicke states of the many-atom system into entangled states with maximum quantum Fisher information.
arXiv Detail & Related papers (2023-06-05T19:02:11Z) - Scalable spin squeezing in a dipolar Rydberg atom array [2.392520546501394]
We show how to enhance the precision of measurements beyond the standard quantum limit.
To do so, one can reshape the quantum projection noise -- a strategy known as squeezing.
We present two independent refinements: first, using a multistep spin-squeezing protocol allows us to further enhance the squeezing by approximately 1 dB, and second, leveraging Floquet engineering to realize Heisenberg interactions.
arXiv Detail & Related papers (2023-03-14T16:35:17Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Enhanced Parameter Estimation with Periodically Driven Quantum Probe [0.0]
We show that in the limit of high-frequency drive and low bosonic frequency the quantum Jahn-Teller system exhibits critical behaviour.
A major advantage of our scheme is the robustness of the system against spin decoherence which allows to perform parameter estimations with measurement time not limited by spin dephasing.
arXiv Detail & Related papers (2021-06-11T10:43:44Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Shortcuts to Adiabaticity for the Quantum Rabi Model: Efficient
Generation of Giant Entangled cat States via Parametric Amplification [5.463632688327904]
We propose a method for the fast generation of nonclassical ground states of the Rabi model in the ultrastrong and deep-strong coupling regimes.
The time-dependent quantum Rabi model is simulated by applying parametric amplification to the Jaynes-Cummings model.
Using experimentally feasible parametric drive, this STA protocol can generate large-size Schr"odinger cat states.
arXiv Detail & Related papers (2020-08-10T12:51:08Z) - Cat states in a driven superfluid: role of signal shape and switching
protocol [62.997667081978825]
We investigate the behavior of a one-dimensional Bose-Hubbard model whose kinetic energy is made to oscillate with zero time-average.
We analyze the robustness of this unconventional ground state against variations of a number of system parameters.
arXiv Detail & Related papers (2020-05-11T15:15:06Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.