Enhanced Parameter Estimation with Periodically Driven Quantum Probe
- URL: http://arxiv.org/abs/2106.06302v1
- Date: Fri, 11 Jun 2021 10:43:44 GMT
- Title: Enhanced Parameter Estimation with Periodically Driven Quantum Probe
- Authors: Peter A. Ivanov
- Abstract summary: We show that in the limit of high-frequency drive and low bosonic frequency the quantum Jahn-Teller system exhibits critical behaviour.
A major advantage of our scheme is the robustness of the system against spin decoherence which allows to perform parameter estimations with measurement time not limited by spin dephasing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a quantum metrology protocol for measuring frequencies and weak
forces based on a periodic modulating quantum Jahn-Teller system composed of a
single spin interacting with two bosonic modes. We show that in the first order
of the frequency drive the time-independent effective Hamiltonian describes
spin-dependent interaction between the two bosonic modes. In the limit of
high-frequency drive and low bosonic frequency the quantum Jahn-Teller system
exhibits critical behaviour which can be used for high-precision quantum
estimation. A major advantage of our scheme is the robustness of the system
against spin decoherence which allows to perform parameter estimations with
measurement time not limited by spin dephasing.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - dc atomtronic quantum interference device: quantum superposition of persistent-current states and a parity-protected qubit [0.0]
The rotational dynamics of a direct-current atomtronic quantum interference device is studied.
A parity protection scheme survives within a small interval around the central frequency.
It is found that such a maximum admissible error in the frequency determination turns out to be inversely proportional to the qubit quality factor.
arXiv Detail & Related papers (2024-03-20T19:10:00Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Cavity-mediated entanglement of parametrically driven spin qubits via
sidebands [0.0]
We consider a pair of quantum dot-based spin qubits that interact via microwave photons in a superconducting cavity, and that are also parametrically driven by separate external electric fields.
We show that the sidebands generated via the driving fields enable highly tunable qubit-qubit entanglement using only ac control.
arXiv Detail & Related papers (2023-07-12T10:35:43Z) - Quantum phase transition of the Jaynes-Cummings model [5.430084892262298]
We show an experimentally feasible scheme to show the quantum phase transition of the Jaynes-Cummings (JC) model.
The ratio of the coupling strength to resonance frequencies in the deep-strong JC model is two orders of magnitude larger than the corresponding ratio in the original quantum Rabi model.
arXiv Detail & Related papers (2023-06-23T14:35:22Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Dynamical emission of phonon pairs in optomechanical systems [6.259066812918972]
Multiphonon state plays an important role in quantum information processing and quantum metrology.
We propose a scheme to realize dynamical emission of phonon pairs based on the technique of stimulated Raman adiabatic passage in a single cavity optomechanical system.
Our proposal can be extended to achieve an antibunched $n$-phonon emitter, which has potential applications for on-chip quantum communications.
arXiv Detail & Related papers (2021-12-26T09:45:56Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Floquet theory for temporal correlations and spectra in time-periodic
open quantum systems: Application to squeezed parametric oscillation beyond
the rotating-wave approximation [0.0]
We propose a method to compute two-time correlations and corresponding spectral densities of time-periodic open quantum systems.
We show how the quantum Langevin equations for the fluctuations can be efficiently integrated by partitioning the time domain into one-period duration intervals.
arXiv Detail & Related papers (2020-05-17T13:25:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.