Neural Combinatorial Optimization with Heavy Decoder: Toward Large Scale
Generalization
- URL: http://arxiv.org/abs/2310.07985v2
- Date: Sat, 13 Jan 2024 01:32:56 GMT
- Title: Neural Combinatorial Optimization with Heavy Decoder: Toward Large Scale
Generalization
- Authors: Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, Zhenkun Wang
- Abstract summary: We propose a novel Light and Heavy Decoder (LEHD) model with a strong generalization ability to address this critical issue.
We develop a data-efficient training scheme and a flexible solution mechanism for the proposed LEHD model.
Our results confirm our proposed LEHD model can significantly improve the state-of-the-art performance for constructive NCO.
- Score: 15.189182646851865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural combinatorial optimization (NCO) is a promising learning-based
approach for solving challenging combinatorial optimization problems without
specialized algorithm design by experts. However, most constructive NCO methods
cannot solve problems with large-scale instance sizes, which significantly
diminishes their usefulness for real-world applications. In this work, we
propose a novel Light Encoder and Heavy Decoder (LEHD) model with a strong
generalization ability to address this critical issue. The LEHD model can learn
to dynamically capture the relationships between all available nodes of varying
sizes, which is beneficial for model generalization to problems of various
scales. Moreover, we develop a data-efficient training scheme and a flexible
solution construction mechanism for the proposed LEHD model. By training on
small-scale problem instances, the LEHD model can generate nearly optimal
solutions for the Travelling Salesman Problem (TSP) and the Capacitated Vehicle
Routing Problem (CVRP) with up to 1000 nodes, and also generalizes well to
solve real-world TSPLib and CVRPLib problems. These results confirm our
proposed LEHD model can significantly improve the state-of-the-art performance
for constructive NCO. The code is available at
https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/LEHD.
Related papers
- UNCO: Towards Unifying Neural Combinatorial Optimization through Large Language Model [21.232626415696267]
We propose a unified neural optimization framework to solve different types of optimization problems (COPs) by a single model.
We use natural language to formulate text-attributed instances for different COPs and encode them in the same embedding space by the large language model (LLM)
Experiments show that the UNCO model can solve multiple COPs after a single-session training, and achieves satisfactory performance that is comparable to several traditional or learning-based baselines.
arXiv Detail & Related papers (2024-08-22T08:42:44Z) - Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW)
The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL.
arXiv Detail & Related papers (2024-07-18T02:46:06Z) - Leader Reward for POMO-Based Neural Combinatorial Optimization [8.301694061287565]
We propose Leader Reward to enhance the model's ability to generate optimal solutions.
We demonstrate that Leader Reward greatly improves the quality of the optimal solutions generated by the model.
arXiv Detail & Related papers (2024-05-22T19:27:03Z) - Instance-Conditioned Adaptation for Large-scale Generalization of Neural Combinatorial Optimization [15.842155380912002]
This work proposes a novel Instance-Conditioned Adaptation Model (ICAM) for better large-scale generalization of neural optimization.
In particular, we design a powerful yet lightweight instance-conditioned Routing adaptation module for the NCO model.
We develop an efficient three-stage reinforcement learning-based training scheme that enables the model to learn cross-scale features without any labeled optimal solution.
arXiv Detail & Related papers (2024-05-03T08:00:19Z) - Self-Improved Learning for Scalable Neural Combinatorial Optimization [15.842155380912002]
This work proposes a novel Self-Improved Learning (SIL) method for better scalability of neural optimization.
We develop an efficient self-improved mechanism that enables direct model training on large-scale problem instances without any labeled data.
In addition, we design a linear attention complexity mechanism for the computation model to efficiently handle large-scale problem instances with low overhead.
arXiv Detail & Related papers (2024-03-28T16:46:53Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - On the Difficulty of Generalizing Reinforcement Learning Framework for
Combinatorial Optimization [6.935838847004389]
Combinatorial optimization problems (COPs) on the graph with real-life applications are canonical challenges in Computer Science.
The underlying principle of this approach is to deploy a graph neural network (GNN) for encoding both the local information of the nodes and the graph-structured data.
We use the security-aware phone clone allocation in the cloud as a classical quadratic assignment problem (QAP) to investigate whether or not deep RL-based model is generally applicable to solve other classes of such hard problems.
arXiv Detail & Related papers (2021-08-08T19:12:04Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.