Trustworthy Machine Learning
- URL: http://arxiv.org/abs/2310.08215v1
- Date: Thu, 12 Oct 2023 11:04:17 GMT
- Title: Trustworthy Machine Learning
- Authors: B\'alint Mucs\'anyi and Michael Kirchhof and Elisa Nguyen and
Alexander Rubinstein and Seong Joon Oh
- Abstract summary: This textbook on Trustworthy Machine Learning (TML) covers a theoretical and technical background of four key topics in TML.
We discuss important classical and contemporary research papers of the aforementioned fields and uncover and connect their underlying intuitions.
- Score: 57.08542102068706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As machine learning technology gets applied to actual products and solutions,
new challenges have emerged. Models unexpectedly fail to generalize to small
changes in the distribution, tend to be confident on novel data they have never
seen, or cannot communicate the rationale behind their decisions effectively
with the end users. Collectively, we face a trustworthiness issue with the
current machine learning technology. This textbook on Trustworthy Machine
Learning (TML) covers a theoretical and technical background of four key topics
in TML: Out-of-Distribution Generalization, Explainability, Uncertainty
Quantification, and Evaluation of Trustworthiness. We discuss important
classical and contemporary research papers of the aforementioned fields and
uncover and connect their underlying intuitions. The book evolved from the
homonymous course at the University of T\"ubingen, first offered in the Winter
Semester of 2022/23. It is meant to be a stand-alone product accompanied by
code snippets and various pointers to further sources on topics of TML. The
dedicated website of the book is https://trustworthyml.io/.
Related papers
- Robust and Scalable Model Editing for Large Language Models [75.95623066605259]
We propose EREN (Edit models by REading Notes) to improve the scalability and robustness of LLM editing.
Unlike existing techniques, it can integrate knowledge from multiple edits, and correctly respond to syntactically similar but semantically unrelated inputs.
arXiv Detail & Related papers (2024-03-26T06:57:23Z) - Second-Order Information Matters: Revisiting Machine Unlearning for Large Language Models [1.443696537295348]
Privacy leakage and copyright violation are still underexplored.
Our unlearning algorithms are not only data-agnostic/model-agnostic but also proven to be robust in terms of utility preservation or privacy guarantee.
arXiv Detail & Related papers (2024-03-13T18:57:30Z) - Zero-knowledge Proof Meets Machine Learning in Verifiability: A Survey [19.70499936572449]
High-quality models rely not only on efficient optimization algorithms but also on the training and learning processes built upon vast amounts of data and computational power.
Due to various challenges such as limited computational resources and data privacy concerns, users in need of models often cannot train machine learning models locally.
This paper presents a comprehensive survey of zero-knowledge proof-based verifiable machine learning (ZKP-VML) technology.
arXiv Detail & Related papers (2023-10-23T12:15:23Z) - Exploring the Landscape of Machine Unlearning: A Comprehensive Survey
and Taxonomy [17.535417441295074]
Machine unlearning (MU) is gaining increasing attention due to the need to remove or modify predictions made by machine learning (ML) models.
This paper presents a comprehensive survey of MU, covering current state-of-the-art techniques and approaches.
The paper also highlights the challenges that need to be addressed, including attack sophistication, standardization, transferability, interpretability, and resource constraints.
arXiv Detail & Related papers (2023-05-10T12:02:18Z) - A Survey of Machine Unlearning [56.017968863854186]
Recent regulations now require that, on request, private information about a user must be removed from computer systems.
ML models often remember' the old data.
Recent works on machine unlearning have not been able to completely solve the problem.
arXiv Detail & Related papers (2022-09-06T08:51:53Z) - Kformer: Knowledge Injection in Transformer Feed-Forward Layers [107.71576133833148]
We propose a novel knowledge fusion model, namely Kformer, which incorporates external knowledge through the feed-forward layer in Transformer.
We empirically find that simply injecting knowledge into FFN can facilitate the pre-trained language model's ability and facilitate current knowledge fusion methods.
arXiv Detail & Related papers (2022-01-15T03:00:27Z) - INTERN: A New Learning Paradigm Towards General Vision [117.3343347061931]
We develop a new learning paradigm named INTERN.
By learning with supervisory signals from multiple sources in multiple stages, the model being trained will develop strong generalizability.
In most cases, our models, adapted with only 10% of the training data in the target domain, outperform the counterparts trained with the full set of data.
arXiv Detail & Related papers (2021-11-16T18:42:50Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
Massive Open Online Courses (MOOCs) have become a popular choice for e-learning thanks to their great flexibility.
Due to large numbers of learners and their diverse backgrounds, it is taxing to offer real-time support.
With the large volume of posts and high workloads for MOOC instructors, it is unlikely that the instructors can identify all learners requiring intervention.
This paper explores for the first time Bayesian deep learning on learner-based text posts with two methods: Monte Carlo Dropout and Variational Inference.
arXiv Detail & Related papers (2021-04-26T15:12:13Z) - Fusion of Federated Learning and Industrial Internet of Things: A Survey [4.810675235074399]
Industrial Internet of Things (IIoT) lays a new paradigm for the concept of Industry 4.0 and paves an insight for new industrial era.
Smart machines and smart factories use machine learning/deep learning based models for incurring intelligence.
In order to address this issue, federated learning (FL) technology is implemented in IIoT by the researchers nowadays to provide safe, accurate, robust and unbiased models.
arXiv Detail & Related papers (2021-01-04T06:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.