Zero-knowledge Proof Meets Machine Learning in Verifiability: A Survey
- URL: http://arxiv.org/abs/2310.14848v1
- Date: Mon, 23 Oct 2023 12:15:23 GMT
- Title: Zero-knowledge Proof Meets Machine Learning in Verifiability: A Survey
- Authors: Zhibo Xing, Zijian Zhang, Jiamou Liu, Ziang Zhang, Meng Li, Liehuang
Zhu, Giovanni Russello
- Abstract summary: High-quality models rely not only on efficient optimization algorithms but also on the training and learning processes built upon vast amounts of data and computational power.
Due to various challenges such as limited computational resources and data privacy concerns, users in need of models often cannot train machine learning models locally.
This paper presents a comprehensive survey of zero-knowledge proof-based verifiable machine learning (ZKP-VML) technology.
- Score: 19.70499936572449
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid advancement of artificial intelligence technology, the usage
of machine learning models is gradually becoming part of our daily lives.
High-quality models rely not only on efficient optimization algorithms but also
on the training and learning processes built upon vast amounts of data and
computational power. However, in practice, due to various challenges such as
limited computational resources and data privacy concerns, users in need of
models often cannot train machine learning models locally. This has led them to
explore alternative approaches such as outsourced learning and federated
learning. While these methods address the feasibility of model training
effectively, they introduce concerns about the trustworthiness of the training
process since computations are not performed locally. Similarly, there are
trustworthiness issues associated with outsourced model inference. These two
problems can be summarized as the trustworthiness problem of model
computations: How can one verify that the results computed by other
participants are derived according to the specified algorithm, model, and input
data? To address this challenge, verifiable machine learning (VML) has emerged.
This paper presents a comprehensive survey of zero-knowledge proof-based
verifiable machine learning (ZKP-VML) technology. We first analyze the
potential verifiability issues that may exist in different machine learning
scenarios. Subsequently, we provide a formal definition of ZKP-VML. We then
conduct a detailed analysis and classification of existing works based on their
technical approaches. Finally, we discuss the key challenges and future
directions in the field of ZKP-based VML.
Related papers
- The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
Federated learning(FL) has emerged as a promising paradigm for training machine learning models in a distributed and privacy-preserving manner.
The choice of methods used for models plays a crucial role in the performance, convergence speed, communication efficiency, privacy guarantees of federated learning systems.
Our research meticulously compares, categorizes, and delineates the merits and demerits of each technique, examining their applicability across diverse FL scenarios.
arXiv Detail & Related papers (2023-10-31T23:26:58Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Towards a population-informed approach to the definition of data-driven
models for structural dynamics [0.0]
A population-based scheme is followed here and two different machine-learning algorithms from the meta-learning domain are used.
The algorithms seem to perform as intended and outperform a traditional machine-learning algorithm at approximating the quantities of interest.
arXiv Detail & Related papers (2023-07-19T09:45:41Z) - Analyzing Machine Learning Models for Credit Scoring with Explainable AI
and Optimizing Investment Decisions [0.0]
This paper examines two different yet related questions related to explainable AI (XAI) practices.
The study compares various machine learning models, including single classifiers (logistic regression, decision trees, LDA, QDA), heterogeneous ensembles (AdaBoost, Random Forest), and sequential neural networks.
Two advanced post-hoc model explainability techniques - LIME and SHAP are utilized to assess ML-based credit scoring models.
arXiv Detail & Related papers (2022-09-19T21:44:42Z) - Uncertainty Estimation in Machine Learning [0.0]
In machine learning the model complexity and severe nonlinearity become serious obstacles to uncertainty evaluation.
The latest example of a pre-trained model is the Generative Pre-trained Transformer 3 with hundreds of billions of parameters and a half-terabyte training dataset.
arXiv Detail & Related papers (2022-06-03T16:11:11Z) - Knowledge Augmented Machine Learning with Applications in Autonomous
Driving: A Survey [37.84106999449108]
This work provides an overview of existing techniques and methods that combine data-driven models with existing knowledge.
The identified approaches are structured according to the categories knowledge integration, extraction and conformity.
In particular, we address the application of the presented methods in the field of autonomous driving.
arXiv Detail & Related papers (2022-05-10T07:25:32Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
We propose a fully decentralized approach, which allows to share knowledge between trained models.
Students are trained on the output of their teachers via synthetically generated input data.
The results show that an untrained student model, trained on the teachers output reaches comparable F1-scores as the teacher.
arXiv Detail & Related papers (2021-02-01T14:38:54Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.