論文の概要: UniPAD: A Universal Pre-training Paradigm for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2310.08370v2
- Date: Sun, 7 Apr 2024 06:21:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 02:35:24.553500
- Title: UniPAD: A Universal Pre-training Paradigm for Autonomous Driving
- Title(参考訳): UniPAD: 自動運転のためのユニバーサル事前訓練パラダイム
- Authors: Honghui Yang, Sha Zhang, Di Huang, Xiaoyang Wu, Haoyi Zhu, Tong He, Shixiang Tang, Hengshuang Zhao, Qibo Qiu, Binbin Lin, Xiaofei He, Wanli Ouyang,
- Abstract要約: 3次元微分レンダリングを応用した新しい自己教師型学習パラダイムUniPADを提案する。
UniPADは暗黙的に3D空間を符号化し、連続した3D形状の構造の再構築を容易にする。
本手法はライダーカメラ,カメラカメラ,ライダーカメラベースラインを9.1,7.7,6.9 NDSで大幅に改善する。
- 参考スコア(独自算出の注目度): 74.34701012543968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of autonomous driving, the significance of effective feature learning is widely acknowledged. While conventional 3D self-supervised pre-training methods have shown widespread success, most methods follow the ideas originally designed for 2D images. In this paper, we present UniPAD, a novel self-supervised learning paradigm applying 3D volumetric differentiable rendering. UniPAD implicitly encodes 3D space, facilitating the reconstruction of continuous 3D shape structures and the intricate appearance characteristics of their 2D projections. The flexibility of our method enables seamless integration into both 2D and 3D frameworks, enabling a more holistic comprehension of the scenes. We manifest the feasibility and effectiveness of UniPAD by conducting extensive experiments on various downstream 3D tasks. Our method significantly improves lidar-, camera-, and lidar-camera-based baseline by 9.1, 7.7, and 6.9 NDS, respectively. Notably, our pre-training pipeline achieves 73.2 NDS for 3D object detection and 79.4 mIoU for 3D semantic segmentation on the nuScenes validation set, achieving state-of-the-art results in comparison with previous methods. The code will be available at https://github.com/Nightmare-n/UniPAD.
- Abstract(参考訳): 自律運転の文脈では、効果的な特徴学習の重要性が広く認識されている。
従来の3次元自己監督型事前学習法は広く成功したが、ほとんどの手法は元々2次元画像用に設計されたアイデアに従う。
本稿では,3次元ボリューム微分可能レンダリングを適用した新しい自己教師型学習パラダイムUniPADを提案する。
UniPADは3次元空間を暗黙的に符号化し、連続した3次元形状の構造の再構築と、それらの2次元投影の複雑な外観特性を促進する。
本手法の柔軟性により、2Dフレームワークと3Dフレームワークのシームレスな統合が可能となり、シーンのより包括的な理解が可能となった。
様々な下流3Dタスクに対して広範な実験を行うことで,UniPADの有効性と有効性を示す。
本手法はライダーカメラ,カメラカメラ,ライダーカメラベースラインを9.1,7.7,6.9 NDSで大幅に改善する。
特に,3次元オブジェクト検出のための73.2 NDS,nuScenes検証セット上の3次元セマンティックセマンティックセグメンテーションのための79.4 mIoUを達成し,従来の手法と比較した結果を得た。
コードはhttps://github.com/Nightmare-n/UniPAD.comで入手できる。
関連論文リスト
- BIP3D: Bridging 2D Images and 3D Perception for Embodied Intelligence [11.91274849875519]
画像中心の3次元知覚モデルBIP3Dを導入し,点中心の手法の限界を克服する。
我々は、事前学習された2次元視覚基盤モデルを利用して意味理解を強化し、空間理解を改善するために空間拡張モジュールを導入する。
我々の実験では、BIP3Dは、EmbodiedScanベンチマークで現在の最先端結果より優れており、3D検出タスクでは5.69%、視覚的グラウンドタスクでは15.25%の改善が達成されている。
論文 参考訳(メタデータ) (2024-11-22T11:35:42Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
本稿では,効率的な3D表現の獲得を容易にするために,新しいユニバーサル3D事前学習フレームワークを提案する。
PonderV2は、11の室内および屋外ベンチマークで最先端のパフォーマンスを達成したことで、その効果が示唆された。
論文 参考訳(メタデータ) (2023-10-12T17:59:57Z) - SOGDet: Semantic-Occupancy Guided Multi-view 3D Object Detection [19.75965521357068]
本稿では,SOGDet(Semantic-Occupancy Guided Multi-view Object Detection)と呼ばれる新しい手法を提案する。
以上の結果から,SOGDet は nuScenes Detection Score (NDS) と平均平均精度 (mAP) の3つのベースライン法の性能を一貫して向上させることがわかった。
これは、3Dオブジェクト検出と3Dセマンティック占有の組み合わせが、3D環境をより包括的に認識し、より堅牢な自律運転システムの構築を支援することを示唆している。
論文 参考訳(メタデータ) (2023-08-26T07:38:21Z) - Joint-MAE: 2D-3D Joint Masked Autoencoders for 3D Point Cloud
Pre-training [65.75399500494343]
Masked Autoencoders (MAE) は、2Dおよび3Dコンピュータビジョンのための自己教師型学習において有望な性能を示した。
自己監督型3次元点雲事前学習のための2D-3DジョイントMAEフレームワークであるJoint-MAEを提案する。
論文 参考訳(メタデータ) (2023-02-27T17:56:18Z) - TANDEM3D: Active Tactile Exploration for 3D Object Recognition [16.548376556543015]
触覚信号を用いた3次元物体認識のための協調学習フレームワークであるTANDEM3Dを提案する。
TANDEM3Dは、PointNet++を使って接触位置と正規値から3Dオブジェクト表現を構築する新しいエンコーダに基づいている。
本手法はシミュレーションで完全に訓練され,実世界の実験で検証される。
論文 参考訳(メタデータ) (2022-09-19T05:54:26Z) - Unsupervised Learning of Visual 3D Keypoints for Control [104.92063943162896]
高次元画像からの感覚運動制御ポリシーの学習は、基礎となる視覚表現の品質に大きく依存する。
本稿では,画像から3次元幾何学的構造を直接教師なしで学習するフレームワークを提案する。
これらの発見された3Dキーポイントは、時間と3D空間の両方で一貫した方法で、ロボットの関節と物体の動きを有意義にキャプチャする傾向がある。
論文 参考訳(メタデータ) (2021-06-14T17:59:59Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
大規模3次元データリポジトリから抽出した3次元特徴を有効活用し,RGB画像から抽出した2次元特徴を向上する手法を提案する。
まず,事前学習した3Dネットワークから3D知識を抽出して2Dネットワークを監督し,トレーニング中の2D特徴からシミュレーションされた3D特徴を学習する。
次に,2次元の正規化方式を設計し,2次元特徴と3次元特徴のキャリブレーションを行った。
第3に,非ペアの3dデータを用いたトレーニングのフレームワークを拡張するために,意味を意識した対向的トレーニングモデルを設計した。
論文 参考訳(メタデータ) (2021-04-06T02:22:24Z) - DSGN: Deep Stereo Geometry Network for 3D Object Detection [79.16397166985706]
画像ベースとLiDARベースの3Dオブジェクト検出器の間には大きなパフォーマンスギャップがある。
我々の手法であるDeep Stereo Geometry Network (DSGN)は,このギャップを著しく低減する。
初めて、シンプルで効果的な1段ステレオベースの3D検出パイプラインを提供する。
論文 参考訳(メタデータ) (2020-01-10T11:44:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。