論文の概要: BrainVoxGen: Deep learning framework for synthesis of Ultrasound to MRI
- arxiv url: http://arxiv.org/abs/2310.08608v2
- Date: Wed, 17 Jul 2024 18:52:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-20 00:02:04.568349
- Title: BrainVoxGen: Deep learning framework for synthesis of Ultrasound to MRI
- Title(参考訳): BrainVoxGen:MRIへの超音波合成のためのディープラーニングフレームワーク
- Authors: Shubham Singh, Mrunal Bewoor, Ammar Ranapurwala, Satyam Rai, Sheetal Patil,
- Abstract要約: 本研究は,脳の3次元超音波画像から3次元MRIボリュームを合成するための新しいディープラーニングフレームワークを提案する。
本研究は、神経画像領域における医療診断と治療計画における変革的応用を約束する。
- 参考スコア(独自算出の注目度): 2.982610402087728
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The work proposes a novel deep-learning framework for the synthesis of three-dimensional MRI volumes from corresponding 3D ultrasound images of the brain, leveraging a modified iteration of the Pix2Pix Generative Adversarial Network (GAN) model. Addressing the formidable challenge of bridging the modality disparity between ultrasound and MRI, this research holds promise for transformative applications in medical diagnostics and treatment planning within the neuroimaging domain. While the findings reveal a discernible degree of similarity between the synthesized MRI volumes and anticipated outcomes, they fall short of practical deployment standards, primarily due to constraints associated with dataset scale and computational resources. The methodology yields MRI volumes with a satisfactory similarity score, establishing a foundational benchmark for subsequent investigations.
- Abstract(参考訳): 本研究は、Pix2Pix Generative Adversarial Network(GAN)モデルの修正版を利用して、脳の3次元超音波画像から3次元MRIボリュームを合成するための新しいディープラーニングフレームワークを提案する。
超音波とMRIのモダリティ格差を埋めることの難しい課題に対処するため,本研究は神経画像領域における医療診断と治療計画の変革的応用を約束する。
これらの結果は、合成したMRIボリュームと予測される結果との明確な類似性を示しているが、主にデータセットのスケールと計算資源に関連する制約のため、実際のデプロイメント標準には達していない。
この手法はMRIのボリュームに良好な類似性スコアを与え、その後の調査の基礎となるベンチマークを確立する。
関連論文リスト
- A Unified Framework for Synthesizing Multisequence Brain MRI via Hybrid Fusion [4.47838172826189]
我々はHF-GAN(Hybrid Fusion GAN)と呼ばれる,マルチシーケンスMR画像の合成のための新しい統合フレームワークを提案する。
本稿では,相補的情報と相補的情報との絡み合った抽出を確実にするためのハイブリッド核融合エンコーダを提案する。
共通特徴表現は、欠落したMR配列を合成するために、モダリティ注入器を介してターゲット潜在空間に変換される。
論文 参考訳(メタデータ) (2024-06-21T08:06:00Z) - MindFormer: A Transformer Architecture for Multi-Subject Brain Decoding via fMRI [50.55024115943266]
我々は、fMRI条件の特徴ベクトルを生成するためにMindFormerと呼ばれる新しいトランスフォーマーアーキテクチャを導入する。
MindFormerは,1)fMRI信号から意味論的に意味のある特徴を抽出するIP-Adapterに基づく新しいトレーニング戦略,2)fMRI信号の個人差を効果的に捉える主観的トークンと線形層である。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - InverseSR: 3D Brain MRI Super-Resolution Using a Latent Diffusion Model [1.4126798060929953]
研究グレードの医療センターから得られた高分解能(HR)MRIスキャンは、画像化された組織に関する正確な情報を提供する。
通常の臨床MRIスキャンは通常、低分解能(LR)である
MRI超解像(SR)のためのエンドツーエンドのディープラーニング手法が提案されているが、入力分布の変化があるたびに再学習する必要がある。
本稿では,英国バイオバンクでトレーニングされた最新の3D脳生成モデル,潜在拡散モデル(LDM)を活用する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-23T23:04:42Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Deep Learning based Multi-modal Computing with Feature Disentanglement
for MRI Image Synthesis [8.363448006582065]
本稿では,MRI合成のための深層学習に基づくマルチモーダル計算モデルを提案する。
提案手法は,各入力モダリティを,共有情報と特定の情報を持つモダリティ固有空間で分割する。
テストフェーズにおける目標モダリティの特定情報の欠如に対処するために、局所適応融合(laf)モジュールを採用してモダリティライクな擬似ターゲットを生成する。
論文 参考訳(メタデータ) (2021-05-06T17:22:22Z) - Multi-Coil MRI Reconstruction Challenge -- Assessing Brain MRI
Reconstruction Models and their Generalizability to Varying Coil
Configurations [40.263770807921524]
深層学習に基づく脳磁気共鳴画像(MRI)再構成法は、MRI取得プロセスを加速する可能性がある。
マルチコイル磁気共鳴画像(MC-MRI)再構成チャレンジは、これらの問題に対処するためのベンチマークを提供する。
本稿では,この課題を実験的に考察し,脳MRI再建モデルのベースラインと状態のセットの結果を要約する。
論文 参考訳(メタデータ) (2020-11-10T04:11:48Z) - Neural Architecture Search for Gliomas Segmentation on Multimodal
Magnetic Resonance Imaging [2.66512000865131]
マルチモーダルMRIスキャンにおける脳腫瘍セグメント化課題に対するニューラルアーキテクチャサーチ(NAS)に基づくソリューションを提案する。
開発されたソリューションは、また、脳MRI処理に適した正規化とパッチ戦略を統合する。
論文 参考訳(メタデータ) (2020-05-13T14:32:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。