論文の概要: Domain-Agnostic Stroke Lesion Segmentation Using Physics-Constrained Synthetic Data
- arxiv url: http://arxiv.org/abs/2412.03318v1
- Date: Wed, 04 Dec 2024 13:52:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 02:08:29.323702
- Title: Domain-Agnostic Stroke Lesion Segmentation Using Physics-Constrained Synthetic Data
- Title(参考訳): 物理制約付き合成データを用いた領域非依存ストローク病変分割
- Authors: Liam Chalcroft, Jenny Crinion, Cathy J. Price, John Ashburner,
- Abstract要約: 合成定量的MRI(qMRI)画像を用いた2つの新しい手法を提案し,セグメンテーションモデルの堅牢性と一般化性を高める。
我々は,MPRAGE画像からqMRIマップを推定するために,qMRI推定モデルを訓練した。
2つ目のアプローチは、脳卒中病変のセグメンテーションのための合成データにおいて、組織ラベルのデータセットからqMRIマップを生成する。
- 参考スコア(独自算出の注目度): 0.15749416770494706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmenting stroke lesions in Magnetic Resonance Imaging (MRI) is challenging due to diverse clinical imaging domains, with existing models struggling to generalise across different MRI acquisition parameters and sequences. In this work, we propose two novel physics-constrained approaches using synthetic quantitative MRI (qMRI) images to enhance the robustness and generalisability of segmentation models. We trained a qMRI estimation model to predict qMRI maps from MPRAGE images, which were used to simulate diverse MRI sequences for segmentation training. A second approach built upon prior work in synthetic data for stroke lesion segmentation, generating qMRI maps from a dataset of tissue labels. The proposed approaches improved over the baseline nnUNet on a variety of out-of-distribution datasets, with the second approach outperforming the prior synthetic data method.
- Abstract(参考訳): MRI(磁気共鳴画像)における脳卒中病変の分離は、様々な臨床画像領域のために困難であり、既存のモデルではMRIの取得パラメータやシーケンスの一般化に苦慮している。
本研究では,合成定量的MRI(qMRI)画像を用いた2つの新しい物理制約付きアプローチを提案し,セグメンテーションモデルの堅牢性と一般化性を高める。
我々は,MPRAGE画像からqMRIマップを推定するために,qMRI推定モデルを訓練した。
2つ目のアプローチは、脳卒中病変のセグメンテーションのための合成データにおいて、組織ラベルのデータセットからqMRIマップを生成する。
提案手法は,様々なアウト・オブ・ディストリビューションデータセットのベースラインであるnnUNetよりも改善され,第2のアプローチは以前の合成データ手法よりも優れていた。
関連論文リスト
- PhaseGen: A Diffusion-Based Approach for Complex-Valued MRI Data Generation [1.683019219727036]
磁気共鳴イメージング(MRI)の生データ(k空間データ)は複雑に評価され、大きさと位相情報の両方を含む。
我々は、大容量画像に条件付けされた合成MRI生データを生成するための、複素数値拡散モデルである$textitPhaseGen$を紹介した。
以上の結果から, 合成位相データによるトレーニングは, 実世界のデータにおける頭蓋骨切断の一般化を著しく向上させることが示された。
論文 参考訳(メタデータ) (2025-04-10T08:44:19Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - DRIFTS: Optimizing Domain Randomization with Synthetic Data and Weight Interpolation for Fetal Brain Tissue Segmentation [1.7134826630987745]
胎児脳MRIにおけるSynthSeg法における領域外一般化ポテンシャルの最大化について述べる。
我々はDRIFTSを単一ソース領域の一般化のための効果的かつ実用的なソリューションとして提案する。
論文 参考訳(メタデータ) (2024-11-11T10:17:44Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - A Compact Implicit Neural Representation for Efficient Storage of
Massive 4D Functional Magnetic Resonance Imaging [14.493622422645053]
fMRI圧縮は、複雑な時間的ダイナミクス、低信号-雑音比、複雑な基礎的冗長性のために、ユニークな課題を生んでいる。
Inlicit Neural Representation (INR)に基づくfMRIデータに適した新しい圧縮パラダイムについて報告する。
論文 参考訳(メタデータ) (2023-11-30T05:54:37Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - High-fidelity Direct Contrast Synthesis from Magnetic Resonance
Fingerprinting [28.702553164811473]
本稿では,MRFデータからコントラスト強調画像を直接合成する教師あり学習手法を提案する。
In-vivo実験は、シミュレーションベースのコントラスト合成や従来のDCS法と比較して、視覚的にも定量的にも優れた画質を示す。
論文 参考訳(メタデータ) (2022-12-21T07:11:39Z) - CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative
R2* Mapping [12.414040285543273]
CoRRECTは、定量的MRI(qMRI)のための統合深部展開(DU)フレームワークである
モデルベースのエンドツーエンドニューラルネットワーク、モーションアーティファクトリダクションの方法、自己教師型学習スキームで構成されている。
実験で収集したmGRE(Multi-Gradient-Recalled Echo) MRIデータから,CoRRECTは高速な取得設定で動きと不均一なアーチファクトのないR2*マップを復元することを示した。
論文 参考訳(メタデータ) (2022-10-12T15:49:51Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - Robust Segmentation of Brain MRI in the Wild with Hierarchical CNNs and
no Retraining [1.0499611180329802]
クリニックで取得した脳MRIスキャンの振り返り分析は、研究データセットよりもはるかに大きなサンプルサイズを持つ神経画像研究を可能にする可能性がある。
画像分割のための畳み込みニューラルネットワーク(CNN)と領域ランダム化の最近の進歩は、大規模な臨床MRIの形態計測を可能にする可能性がある。
一般的にSynthSegは頑健であるが,低信号-雑音比,組織コントラストの低いスキャンではフェールすることが多い。
条件付きセグメンテーションとCNNの階層構造を用いてこれらの問題を緩和する新しい手法であるSynthSeg+を提案する。
論文 参考訳(メタデータ) (2022-03-03T19:18:28Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Robust Compressed Sensing MRI with Deep Generative Priors [84.69062247243953]
臨床MRIデータに対するCSGMフレームワークの初成功例を示す。
我々は、高速MRIデータセットから脳スキャンに先立って生成をトレーニングし、Langevin dynamicsによる後部サンプリングが高品質な再構成を実現することを示す。
論文 参考訳(メタデータ) (2021-08-03T08:52:06Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - Deep Learning based Multi-modal Computing with Feature Disentanglement
for MRI Image Synthesis [8.363448006582065]
本稿では,MRI合成のための深層学習に基づくマルチモーダル計算モデルを提案する。
提案手法は,各入力モダリティを,共有情報と特定の情報を持つモダリティ固有空間で分割する。
テストフェーズにおける目標モダリティの特定情報の欠如に対処するために、局所適応融合(laf)モジュールを採用してモダリティライクな擬似ターゲットを生成する。
論文 参考訳(メタデータ) (2021-05-06T17:22:22Z) - Multi-Coil MRI Reconstruction Challenge -- Assessing Brain MRI
Reconstruction Models and their Generalizability to Varying Coil
Configurations [40.263770807921524]
深層学習に基づく脳磁気共鳴画像(MRI)再構成法は、MRI取得プロセスを加速する可能性がある。
マルチコイル磁気共鳴画像(MC-MRI)再構成チャレンジは、これらの問題に対処するためのベンチマークを提供する。
本稿では,この課題を実験的に考察し,脳MRI再建モデルのベースラインと状態のセットの結果を要約する。
論文 参考訳(メタデータ) (2020-11-10T04:11:48Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
提案するフレームワークは,ストレッチアウトアップサンプリングモジュール,ブレインアトラスエンコーダ,セグメンテーション一貫性モジュール,マルチスケールラベルワイド識別器から構成される。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-26T02:50:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。