論文の概要: A Simple Way to Incorporate Novelty Detection in World Models
- arxiv url: http://arxiv.org/abs/2310.08731v1
- Date: Thu, 12 Oct 2023 21:38:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 15:33:13.307934
- Title: A Simple Way to Incorporate Novelty Detection in World Models
- Title(参考訳): 世界モデルにおける新規性検出の簡易化
- Authors: Geigh Zollicoffer, Kenneth Eaton, Jonathan Balloch, Julia Kim, Mark O.
Riedl, Robert Wright
- Abstract要約: 世界モデルを用いた強化学習(RL)は近年大きな成功を収めている。
しかし、突然世界力学や性質が変化した場合、エージェントの性能と信頼性は劇的に低下する。
本稿では,世界モデルRLエージェントにノベルティ検出を組み込むための単純なバウンディング手法を提案する。
- 参考スコア(独自算出の注目度): 15.91258156780494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) using world models has found significant recent
successes. However, when a sudden change to world mechanics or properties
occurs then agent performance and reliability can dramatically decline. We
refer to the sudden change in visual properties or state transitions as {\em
novelties}. Implementing novelty detection within generated world model
frameworks is a crucial task for protecting the agent when deployed. In this
paper, we propose straightforward bounding approaches to incorporate novelty
detection into world model RL agents, by utilizing the misalignment of the
world model's hallucinated states and the true observed states as an anomaly
score. We first provide an ontology of novelty detection relevant to sequential
decision making, then we provide effective approaches to detecting novelties in
a distribution of transitions learned by an agent in a world model. Finally, we
show the advantage of our work in a novel environment compared to traditional
machine learning novelty detection methods as well as currently accepted RL
focused novelty detection algorithms.
- Abstract(参考訳): 世界モデルを用いた強化学習(RL)は近年大きな成功を収めている。
しかし、突然世界力学や性質が変化した場合、エージェントの性能と信頼性は劇的に低下する。
視覚特性や状態遷移の突然の変化を {\em novelties} と呼ぶ。
生成したワールドモデルフレームワークに新規性検出を実装することは、デプロイ時にエージェントを保護するための重要なタスクである。
本稿では,世界模型の幻覚状態と真の観測状態の誤配を異常スコアとして利用することにより,新規性検出を世界モデルRLエージェントに組み込むための単純なバウンダリング手法を提案する。
まず、逐次意思決定に関連する新規性検出のオントロジーを提供し、次いで、エージェントが世界モデルで学習した遷移の分布において、新規性を検出する効果的なアプローチを提案する。
最後に、従来の機械学習のノベルティ検出法や、現在受け入れられているrlにフォーカスしたノベルティ検出アルゴリズムと比較して、新しい環境での研究の利点を示す。
関連論文リスト
- Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
斬新なクラスとドメインの両方が存在するようなオープンワールドシナリオでは、理想的なセグメンテーションモデルは安全のために異常なクラスを検出する必要がある。
既存の方法はドメインレベルとセマンティックレベルの分散シフトを区別するのに苦労することが多い。
論文 参考訳(メタデータ) (2024-11-06T11:03:02Z) - Learning World Models for Unconstrained Goal Navigation [4.549550797148707]
本研究では,世界モデル学習のための目標指向探索アルゴリズムであるMUNを紹介する。
MUNは、リプレイバッファ内の任意のサブゴール状態間の状態遷移をモデル化することができる。
その結果、MUNは世界モデルの信頼性を高め、政策の一般化能力を大幅に改善することを示した。
論文 参考訳(メタデータ) (2024-11-03T01:35:06Z) - Open-World Reinforcement Learning over Long Short-Term Imagination [91.28998327423295]
LS-Imagineは、有限個の状態遷移ステップにおいて、イマジネーションの地平線を拡大する。
我々の手法は、MineDojoの最先端技術よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2024-10-04T17:17:30Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Federated Continual Novel Class Learning [68.05835753892907]
本稿では,グローバルな新規クラス数を正確に推定できるグローバルアライメント学習フレームワークを提案する。
Galは新規クラスの性能を大幅に改善し、精度は5.1%から10.6%に向上した。
Galは、様々な主流のフェデレートラーニングアルゴリズムに新しいクラス発見と学習能力を持たせるのに効果的であることが示されている。
論文 参考訳(メタデータ) (2023-12-21T00:31:54Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
対照的な教師なし学習と介入不変正規化器を用いて不変特徴を学習する世界モデルを提案する。
提案手法は,現状のモデルベースおよびモデルフリーのRL法より優れ,iGibsonベンチマークで評価された分布外ナビゲーションタスクを大幅に改善する。
論文 参考訳(メタデータ) (2023-12-14T15:53:07Z) - Learning to Operate in Open Worlds by Adapting Planning Models [12.513121330508477]
プランニングエージェントは、ドメインモデルがもはや正確に世界を表すことができない新しい状況で振る舞うことができない。
オープンな世界で活動するエージェントに対して,新規性の存在を検知し,ドメインモデルに効果的に適用するアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-24T21:04:16Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Investigating the role of model-based learning in exploration and
transfer [11.652741003589027]
本稿では,モデルベースエージェントの文脈における伝達学習について検討する。
モデルベースアプローチは,移動学習におけるモデルフリーベースラインよりも優れていることがわかった。
本研究の結果から,本質的な探索と環境モデルが組み合わさって,自己監督的かつ新たな報酬関数に一般化可能なエージェントの方向性を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-02-08T11:49:58Z) - Neuro-Symbolic World Models for Adapting to Open World Novelty [9.707805250772129]
早急なノベルティ適応のための、エンドツーエンドのトレーニング可能なニューロシンボリックワールドモデルであるWorldClonerを紹介する。
WorldClonerは、プレノベルティ環境遷移の効率的なシンボル表現を学ぶ。
WorldClonerは、想像力に基づく適応を使用してポリシー学習プロセスを強化する。
論文 参考訳(メタデータ) (2023-01-16T07:49:12Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。