論文の概要: Provably Cost-Sensitive Adversarial Defense via Randomized Smoothing
- arxiv url: http://arxiv.org/abs/2310.08732v3
- Date: Tue, 10 Jun 2025 17:50:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:38.268678
- Title: Provably Cost-Sensitive Adversarial Defense via Randomized Smoothing
- Title(参考訳): ランダム化平滑化による費用対効果防御の可能性
- Authors: Yuan Xin, Dingfan Chen, Michael Backes, Xiao Zhang,
- Abstract要約: 本研究では,コスト依存シナリオ下での対向的摂動に対する頑健な学習の問題について検討する。
当社のソリューションでは,コストに敏感なロバストネスを認証し,最適化するための,証明可能な堅牢な学習アルゴリズムを導入している。
さらに,モデル精度を損なうことなく,信頼性の高いコスト感受性を向上するロバストトレーニング手法を設計する。
- 参考スコア(独自算出の注目度): 26.26867107261039
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As ML models are increasingly deployed in critical applications, robustness against adversarial perturbations is crucial. While numerous defenses have been proposed to counter such attacks, they typically assume that all adversarial transformations are equally important, an assumption that rarely aligns with real-world applications. To address this, we study the problem of robust learning against adversarial perturbations under cost-sensitive scenarios, where the potential harm of different types of misclassifications is encoded in a cost matrix. Our solution introduces a provably robust learning algorithm to certify and optimize for cost-sensitive robustness, building on the scalable certification framework of randomized smoothing. Specifically, we formalize the definition of cost-sensitive certified radius and propose our novel adaptation of the standard certification algorithm to generate tight robustness certificates tailored to any cost matrix. In addition, we design a robust training method that improves certified cost-sensitive robustness without compromising model accuracy. Extensive experiments on benchmark datasets, including challenging ones unsolvable by existing methods, demonstrate the effectiveness of our certification algorithm and training method across various cost-sensitive scenarios.
- Abstract(参考訳): MLモデルはますます重要なアプリケーションにデプロイされているため、敵の摂動に対する堅牢性は不可欠である。
このような攻撃に対抗するために多くの防衛策が提案されているが、通常、全ての敵変換が同様に重要であると仮定する。
そこで我々は,異なるタイプの誤分類の潜在的な害をコスト行列にエンコードする,コスト感受性シナリオ下での対向的摂動に対する頑健な学習の課題について検討する。
我々のソリューションは、ランダム化スムーシングのスケーラブルな認証フレームワークの上に構築され、コストに敏感な堅牢性を証明し、最適化するための、証明可能な堅牢な学習アルゴリズムを導入している。
具体的には、コスト依存型認定半径の定義を形式化し、コスト行列に合わせた厳密な堅牢性証明書を生成するための標準認証アルゴリズムの新たな適応を提案する。
さらに,モデル精度を損なうことなく,信頼性の高いコスト感受性を向上するロバストトレーニング手法を設計する。
既存の手法では解決不可能な課題を含むベンチマークデータセットに関する大規模な実験は、さまざまなコスト依存シナリオにおける認証アルゴリズムとトレーニング方法の有効性を実証している。
関連論文リスト
- Provably Unlearnable Data Examples [27.24152626809928]
原文(投稿日:2012/09/19)へのリンク 未許可のモデルでは、共有データを学習不能にするための努力が続けられている。
本稿では、学習不能データセットのいわゆる$(q, eta)$-Learnabilityを認証するためのメカニズムを提案する。
認証の低い$(q, eta)$-Learnabilityは、データセットに対するより堅牢で効果的な保護を示している。
論文 参考訳(メタデータ) (2024-05-06T09:48:47Z) - Adaptive Hierarchical Certification for Segmentation using Randomized Smoothing [87.48628403354351]
機械学習の認証は、特定の条件下では、敵対的なサンプルが特定の範囲内でモデルを回避できないことを証明している。
セグメンテーションの一般的な認証方法は、平らな粒度のクラスを使い、モデルの不確実性による高い断続率をもたらす。
本稿では,複数レベルの階層内で画素を認証し,不安定なコンポーネントに対して粗いレベルに適応的に認証を緩和する,新しい,より実用的な設定を提案する。
論文 参考訳(メタデータ) (2024-02-13T11:59:43Z) - Towards Certified Probabilistic Robustness with High Accuracy [3.957941698534126]
Adrialの例は、ニューラルネットワーク上に構築された多くのクリティカルシステムに対して、セキュリティ上の脅威となる。
確実に堅牢で正確なニューラルネットワークモデルを構築する方法はまだオープンな問題だ。
本稿では,高い精度と高い確率ロバスト性を実現することを目的とした新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-02T09:39:47Z) - Confidence-aware Training of Smoothed Classifiers for Certified
Robustness [75.95332266383417]
我々は「ガウス雑音下での精度」を、入力に対する対角的ロバスト性の容易に計算可能なプロキシとして利用する。
実験の結果, 提案手法は, 最先端の訓練手法による信頼性向上を継続的に示すことがわかった。
論文 参考訳(メタデータ) (2022-12-18T03:57:12Z) - SmoothMix: Training Confidence-calibrated Smoothed Classifiers for
Certified Robustness [61.212486108346695]
自己混合によるスムーズな分類器のロバスト性を制御するためのトレーニングスキームSmoothMixを提案する。
提案手法は, 厳密性に制限された原因として, 信頼性の低い, オフクラスに近いサンプルを効果的に同定する。
提案手法はスムーズな分類器の検証値である$ell$-robustnessを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2021-11-17T18:20:59Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Certified Distributional Robustness on Smoothed Classifiers [27.006844966157317]
本稿では,ロバスト性証明として,入力分布に対する最悪の逆損失を提案する。
双対性と滑らか性を利用して、証明書のサロゲートとして容易に計算できる上限を与える。
論文 参考訳(メタデータ) (2020-10-21T13:22:25Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
最近のランダムな平滑化技術は、最悪の$ell$-robustnessを平均ケースのロバストネスに変換することができることを示している。
その結果,スムーズな分類器の精度と信頼性の高いロバスト性とのトレードオフは,ノイズに対する予測一貫性の規則化によって大きく制御できることが判明した。
論文 参考訳(メタデータ) (2020-06-07T06:57:43Z) - Deep Learning based Frameworks for Handling Imbalance in DGA, Email, and
URL Data Analysis [2.2901908285413413]
本稿では,コストに敏感なディープラーニングに基づくフレームワークを提案し,フレームワークの性能評価を行う。
コスト非感受性およびコスト非感受性法を用いて様々な実験を行った。
すべての実験において、コストに敏感なディープラーニング手法はコストに敏感なアプローチよりも優れている。
論文 参考訳(メタデータ) (2020-03-31T00:22:25Z) - Regularized Training and Tight Certification for Randomized Smoothed
Classifier with Provable Robustness [15.38718018477333]
我々は新たな正規化リスクを導出し、正規化器はスムーズな手法の精度と堅牢性を適応的に促進することができる。
また、正規化効果を利用して、高い確率で保持されるより厳密なロバスト性の下限を提供する新しい認証アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-02-17T20:54:34Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。