Learning to Adapt SAM for Segmenting Cross-domain Point Clouds
- URL: http://arxiv.org/abs/2310.08820v4
- Date: Sun, 22 Sep 2024 16:16:44 GMT
- Title: Learning to Adapt SAM for Segmenting Cross-domain Point Clouds
- Authors: Xidong Peng, Runnan Chen, Feng Qiao, Lingdong Kong, Youquan Liu, Yujing Sun, Tai Wang, Xinge Zhu, Yuexin Ma,
- Abstract summary: Unsupervised domain adaptation (UDA) in 3D segmentation tasks presents a formidable challenge.
We propose an innovative hybrid feature augmentation methodology, which significantly enhances the alignment between the 3D feature space and SAM's feature space.
Our method is evaluated on many widely-recognized datasets and achieves state-of-the-art performance.
- Score: 25.66755977728181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation (UDA) in 3D segmentation tasks presents a formidable challenge, primarily stemming from the sparse and unordered nature of point cloud data. Especially for LiDAR point clouds, the domain discrepancy becomes obvious across varying capture scenes, fluctuating weather conditions, and the diverse array of LiDAR devices in use. While previous UDA methodologies have often sought to mitigate this gap by aligning features between source and target domains, this approach falls short when applied to 3D segmentation due to the substantial domain variations. Inspired by the remarkable generalization capabilities exhibited by the vision foundation model, SAM, in the realm of image segmentation, our approach leverages the wealth of general knowledge embedded within SAM to unify feature representations across diverse 3D domains and further solves the 3D domain adaptation problem. Specifically, we harness the corresponding images associated with point clouds to facilitate knowledge transfer and propose an innovative hybrid feature augmentation methodology, which significantly enhances the alignment between the 3D feature space and SAM's feature space, operating at both the scene and instance levels. Our method is evaluated on many widely-recognized datasets and achieves state-of-the-art performance.
Related papers
- One for All: Multi-Domain Joint Training for Point Cloud Based 3D Object Detection [71.78795573911512]
We propose textbfOneDet3D, a universal one-for-all model that addresses 3D detection across different domains.
We propose the domain-aware in scatter and context, guided by a routing mechanism, to address the data interference issue.
The fully sparse structure and anchor-free head further accommodate point clouds with significant scale disparities.
arXiv Detail & Related papers (2024-11-03T14:21:56Z) - Unified Domain Generalization and Adaptation for Multi-View 3D Object Detection [14.837853049121687]
3D object detection leveraging multi-view cameras has demonstrated their practical and economical value in challenging vision tasks.
Typical supervised learning approaches face challenges in achieving satisfactory adaptation toward unseen and unlabeled target datasets.
We propose Unified Domain Generalization and Adaptation (UDGA), a practical solution to mitigate those drawbacks.
arXiv Detail & Related papers (2024-10-29T18:51:49Z) - LiOn-XA: Unsupervised Domain Adaptation via LiDAR-Only Cross-Modal Adversarial Training [61.26381389532653]
LiOn-XA is an unsupervised domain adaptation (UDA) approach that combines LiDAR-Only Cross-Modal (X) learning with Adversarial training for 3D LiDAR point cloud semantic segmentation.
Our experiments on 3 real-to-real adaptation scenarios demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-10-21T09:50:17Z) - PointDGMamba: Domain Generalization of Point Cloud Classification via Generalized State Space Model [77.00221501105788]
Domain Generalization (DG) has been recently explored to improve the generalizability of point cloud classification (PCC) models toward unseen domains.
We present the first work that studies the generalizability of state space models (SSMs) in DG PCC.
We propose a novel framework, PointDGMamba, that excels in strong generalizability toward unseen domains.
arXiv Detail & Related papers (2024-08-24T12:53:48Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - CMDA: Cross-Modal and Domain Adversarial Adaptation for LiDAR-Based 3D
Object Detection [14.063365469339812]
LiDAR-based 3D Object Detection methods often do not generalize well to target domains outside the source (or training) data distribution.
We introduce a novel unsupervised domain adaptation (UDA) method, called CMDA, which leverages visual semantic cues from an image modality.
We also introduce a self-training-based learning strategy, wherein a model is adversarially trained to generate domain-invariant features.
arXiv Detail & Related papers (2024-03-06T14:12:38Z) - Unified Domain Adaptive Semantic Segmentation [96.74199626935294]
Unsupervised Adaptive Domain Semantic (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain.
We propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies.
Our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks.
arXiv Detail & Related papers (2023-11-22T09:18:49Z) - Improving Anomaly Segmentation with Multi-Granularity Cross-Domain
Alignment [17.086123737443714]
Anomaly segmentation plays a pivotal role in identifying atypical objects in images, crucial for hazard detection in autonomous driving systems.
While existing methods demonstrate noteworthy results on synthetic data, they often fail to consider the disparity between synthetic and real-world data domains.
We introduce the Multi-Granularity Cross-Domain Alignment framework, tailored to harmonize features across domains at both the scene and individual sample levels.
arXiv Detail & Related papers (2023-08-16T22:54:49Z) - BEV-DG: Cross-Modal Learning under Bird's-Eye View for Domain
Generalization of 3D Semantic Segmentation [59.99683295806698]
Cross-modal Unsupervised Domain Adaptation (UDA) aims to exploit the complementarity of 2D-3D data to overcome the lack of annotation in a new domain.
We propose cross-modal learning under bird's-eye view for Domain Generalization (DG) of 3D semantic segmentation, called BEV-DG.
arXiv Detail & Related papers (2023-08-12T11:09:17Z) - SUG: Single-dataset Unified Generalization for 3D Point Cloud
Classification [44.27324696068285]
We propose a Single-dataset Unified Generalization (SUG) framework to alleviate the unforeseen domain differences faced by a well-trained source model.
Specifically, we first design a Multi-grained Sub-domain Alignment (MSA) method, which can constrain the learned representations to be domain-agnostic and discriminative.
Then, a Sample-level Domain-aware Attention (SDA) strategy is presented, which can selectively enhance easy-to-adapt samples from different sub-domains.
arXiv Detail & Related papers (2023-05-16T04:36:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.