A Hybrid Transfer Learning Assisted Decision Support System for Accurate
Prediction of Alzheimer Disease
- URL: http://arxiv.org/abs/2310.08888v1
- Date: Fri, 13 Oct 2023 06:48:38 GMT
- Title: A Hybrid Transfer Learning Assisted Decision Support System for Accurate
Prediction of Alzheimer Disease
- Authors: Mahin Khan Mahadi, Abdullah Abdullah, Jamal Uddin, Asif Newaz
- Abstract summary: Alzheimer's disease is the most common long-term illness in elderly people.
Deep neural model is more accurate and effective than general machine learning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's disease (AD) is the most common long-term illness in elderly
people. In recent years, deep learning has become popular in the area of
medical imaging and has had a lot of success there. It has become the most
effective way to look at medical images. When it comes to detecting AD, the
deep neural model is more accurate and effective than general machine learning.
Our research contributes to the development of a more comprehensive
understanding and detection of the disease by identifying four distinct classes
that are predictive of AD with a high weighted accuracy of 98.91%. A unique
strategy has been proposed to improve the accuracy of the imbalance dataset
classification problem via the combination of ensemble averaging models and
five different transfer learning models in this study.
EfficientNetB0+Resnet152(effnet+res152) and
InceptionV3+EfficientNetB0+Resnet50(incep+effnet+res50) models have been
fine-tuned and have reached the highest weighted accuracy for multi-class AD
stage classifications.
Related papers
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
In this paper, an ensemble learning technique is proposed for early detection and management of diabetic retinopathy.
The proposed model is tested on the APTOS dataset and it is showing supremacy on the validation accuracy ($99%)$ in comparison to the previous models.
arXiv Detail & Related papers (2024-07-25T04:09:17Z) - Adapting Machine Learning Diagnostic Models to New Populations Using a Small Amount of Data: Results from Clinical Neuroscience [21.420302408947194]
We develop a weighted empirical risk minimization approach that optimally combines data from a source group to make predictions on a target group.
We apply this method to multi-source data of 15,363 individuals from 20 neuroimaging studies to build ML models for diagnosis of Alzheimer's disease and estimation of brain age.
arXiv Detail & Related papers (2023-08-06T18:05:39Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Novel Deep Learning Architecture for Heart Disease Prediction using
Convolutional Neural Network [0.0]
Heart disease is one of the deadliest diseases which is hampering the lives of many people around the world.
This paper proposes a novel deep learning architecture using a 1D convolutional neural network for classification between healthy and non-healthy persons.
The proposed network achieves over 97% training accuracy and 96% test accuracy on the dataset.
arXiv Detail & Related papers (2021-05-22T22:00:57Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
arXiv Detail & Related papers (2021-04-22T13:39:33Z) - Multimodal Inductive Transfer Learning for Detection of Alzheimer's
Dementia and its Severity [39.57255380551913]
We present a novel architecture that leverages acoustic, cognitive, and linguistic features to form a multimodal ensemble system.
It uses specialized artificial neural networks with temporal characteristics to detect Alzheimer's dementia (AD) and its severity.
Our system achieves state-of-the-art test accuracy, precision, recall, and F1-score of 83.3% each for AD classification, and state-of-the-art test root mean squared error (RMSE) of 4.60 for MMSE score regression.
arXiv Detail & Related papers (2020-08-30T21:47:26Z) - Application of Machine Learning to Predict the Risk of Alzheimer's
Disease: An Accurate and Practical Solution for Early Diagnostics [1.1470070927586016]
Alzheimer's Disease (AD) ravages the cognitive ability of more than 5 million Americans and creates an enormous strain on the health care system.
This paper proposes a machine learning predictive model for AD development without medical imaging and with fewer clinical visits and tests.
Our model is trained and validated using demographic, biomarker and cognitive test data from two prominent research studies.
arXiv Detail & Related papers (2020-06-02T14:52:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.