論文の概要: A Confidence-based Acquisition Model for Self-supervised Active Learning and Label Correction
- arxiv url: http://arxiv.org/abs/2310.08944v2
- Date: Thu, 21 Nov 2024 08:50:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:16:58.552035
- Title: A Confidence-based Acquisition Model for Self-supervised Active Learning and Label Correction
- Title(参考訳): 自己教師型能動学習とラベル補正のための信頼度に基づく獲得モデル
- Authors: Carel van Niekerk, Christian Geishauser, Michael Heck, Shutong Feng, Hsien-chin Lin, Nurul Lubis, Benjamin Ruppik, Renato Vukovic, Milica Gašić,
- Abstract要約: 逐次マルチアウトプット問題に適したプールベースのアクティブラーニングフレームワークであるCAMELを提案する。
専門家アノテータは選択されたシーケンスのごく一部だけをラベル付けする必要がある。
ラベル補正機構をデプロイすることで、CAMELをデータクリーニングにも利用することができる。
- 参考スコア(独自算出の注目度): 6.377334634656281
- License:
- Abstract: Supervised neural approaches are hindered by their dependence on large, meticulously annotated datasets, a requirement that is particularly cumbersome for sequential tasks. The quality of annotations tends to deteriorate with the transition from expert-based to crowd-sourced labelling. To address these challenges, we present CAMEL (Confidence-based Acquisition Model for Efficient self-supervised active Learning), a pool-based active learning framework tailored to sequential multi-output problems. CAMEL possesses two core features: (1) it requires expert annotators to label only a fraction of a chosen sequence, and (2) it facilitates self-supervision for the remainder of the sequence. By deploying a label correction mechanism, CAMEL can also be utilised for data cleaning. We evaluate CAMEL on two sequential tasks, with a special emphasis on dialogue belief tracking, a task plagued by the constraints of limited and noisy datasets. Our experiments demonstrate that CAMEL significantly outperforms the baselines in terms of efficiency. Furthermore, the data corrections suggested by our method contribute to an overall improvement in the quality of the resulting datasets.
- Abstract(参考訳): 監視されたニューラルアプローチは、大規模で細心の注意を払って注釈付けされたデータセットに依存しているため、特にシーケンシャルなタスクには厄介な要件である。
アノテーションの品質は、専門家ベースのラベリングからクラウドソースのラベリングへの移行によって悪化する傾向にある。
これらの課題に対処するために、逐次多出力問題に適したプールベースのアクティブラーニングフレームワークであるCAMEL(Confidence-based Acquisition Model for Efficient Self-supervised active Learning)を提案する。
CAMELには2つの中核的特徴がある:(1)専門家のアノテータが選択されたシーケンスのごく一部だけをラベル付けする必要がある。
ラベル補正機構をデプロイすることで、CAMELをデータクリーニングにも利用することができる。
我々はCAMELを2つの逐次的タスクで評価し、特に、限られたデータセットとノイズの多いデータセットの制約に悩まされるタスクである対話的信念追跡に重点を置いている。
実験の結果,CAMELは効率の点でベースラインを著しく上回っていることがわかった。
さらに,本手法が提案するデータ修正は,結果のデータセットの質の向上に寄与する。
関連論文リスト
- Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) は、与えられたレビューに対して全てのクワッド(アスペクト項、アスペクトカテゴリー、意見項、感情極性)を予測することを目的としている。
ASQPタスクにおける重要な課題はラベル付きデータの不足であり、既存のメソッドのパフォーマンスを制限している。
そこで我々は,擬似ラベルスコアラーを用いた自己学習フレームワークを提案し,レビューと擬似ラベルの一致をスコアラーが評価する。
論文 参考訳(メタデータ) (2024-06-26T05:30:21Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
ISTは単純だが有効であり、既存の自己学習に基づく半教師あり学習手法に適合する。
提案したISTを5つのデータセットと2種類のバックボーンで検証し,認識精度と学習速度を効果的に向上させる。
論文 参考訳(メタデータ) (2024-04-14T05:02:00Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Active Label Correction for Semantic Segmentation with Foundation Models [34.0733215363568]
本稿では,画素の擬似ラベルを補正する補正クエリの設計に基づく,アクティブラベル補正(ALC)の有効なフレームワークを提案する。
提案手法は, (i) 擬似ラベルを用いた補正クエリのアノテータフレンドリな設計, (ii) スーパーピクセルに基づくラベル展開を先取りする取得関数の2つの重要な手法からなる。
PASCAL,Cityscapes,Kvasir-SEGデータセットの実験結果から,ALCフレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-03-16T06:10:22Z) - DUEL: Duplicate Elimination on Active Memory for Self-Supervised
Class-Imbalanced Learning [19.717868805172323]
新たなフレームワークであるDuplicate Elimination(DUEL)の自己教師付き事前学習におけるアクティブなデータフィルタリングプロセスを提案する。
このフレームワークは、人間のワーキングメモリにインスパイアされたアクティブメモリを統合し、メモリ内のデータの多様性を測定する特異性情報を導入する。
最も重複したデータを新しいサンプルに置き換えるDUELポリシは、メモリ内の特異性情報を強化し、クラス不均衡を軽減することを目的としている。
論文 参考訳(メタデータ) (2024-02-14T06:09:36Z) - Uncertainty-aware Self-training for Low-resource Neural Sequence
Labeling [29.744621356187764]
本稿では,ニューラルシークエンスラベリング(NSL)のための新しい未知の自己学習フレームワークSeqUSTを提案する。
ベイジアンニューラルネットワーク(BNN)にモンテカルロ(MC)ドロップアウトを組み込んでトークンレベルで不確実性評価を行い、ラベルのないデータから信頼性の高い言語トークンを選択する。
ノイズロスのあるマスク付きシークエンスラベリングタスクは、ノイズのある擬似ラベルの問題を抑えることを目的とした堅牢なトレーニングを支援する。
論文 参考訳(メタデータ) (2023-02-17T02:40:04Z) - Adversarial Dual-Student with Differentiable Spatial Warping for
Semi-Supervised Semantic Segmentation [70.2166826794421]
本研究では、教師なしデータ拡張を行うために、微分可能な幾何ワープを提案する。
また,平均教師数を改善するために,新しい対角的二重学習フレームワークを提案する。
我々のソリューションは、両方のデータセットで得られるパフォーマンスと最先端の結果を大幅に改善します。
論文 参考訳(メタデータ) (2022-03-05T17:36:17Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
弱機能および半教師付きオブジェクト検出フレームワーク(WSSOD)を提案する。
エージェント検出器は、まず関節データセット上でトレーニングされ、弱注釈画像上で擬似境界ボックスを予測するために使用される。
提案フレームワークはPASCAL-VOC と MSCOCO のベンチマークで顕著な性能を示し,完全教師付き環境で得られたものと同等の性能を達成している。
論文 参考訳(メタデータ) (2021-05-21T11:58:50Z) - Social Adaptive Module for Weakly-supervised Group Activity Recognition [143.68241396839062]
本稿では、弱教師付きグループ活動認識(GAR)と呼ばれる新しいタスクを提案する。
従来のGARタスクとは違い、ビデオレベルラベルのみが利用可能であるが、トレーニングデータにおいても、各フレーム内の重要人物は提供されない。
これにより、大規模なNBAデータセットの収集とアノテートが容易になり、GARに新たな課題が生まれます。
論文 参考訳(メタデータ) (2020-07-18T16:40:55Z) - Active and Incremental Learning with Weak Supervision [7.2288756536476635]
本研究では,逐次学習方式と能動学習方式の組み合わせについて述べる。
オブジェクト検出タスクは、PASCAL VOCデータセット上で連続的な探索コンテキストで評価される。
また,実世界の生物多様性アプリケーションにおいて,能動的・漸進的学習に基づく弱教師付きシステムを検証する。
論文 参考訳(メタデータ) (2020-01-20T13:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。