論文の概要: Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction
- arxiv url: http://arxiv.org/abs/2406.18078v1
- Date: Wed, 26 Jun 2024 05:30:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 14:28:34.652200
- Title: Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction
- Title(参考訳): Pseudo-Label Scorer を用いた知覚四分法予測のための自己学習
- Authors: Yice Zhang, Jie Zeng, Weiming Hu, Ziyi Wang, Shiwei Chen, Ruifeng Xu,
- Abstract要約: Aspect Sentiment Quad Prediction (ASQP) は、与えられたレビューに対して全てのクワッド(アスペクト項、アスペクトカテゴリー、意見項、感情極性)を予測することを目的としている。
ASQPタスクにおける重要な課題はラベル付きデータの不足であり、既存のメソッドのパフォーマンスを制限している。
そこで我々は,擬似ラベルスコアラーを用いた自己学習フレームワークを提案し,レビューと擬似ラベルの一致をスコアラーが評価する。
- 参考スコア(独自算出の注目度): 54.23208041792073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review, which is the most representative and challenging task in aspect-based sentiment analysis. A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods. To tackle this issue, we propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels, aiming to filter out mismatches and thereby enhance the effectiveness of self-training. We highlight two critical aspects to ensure the scorer's effectiveness and reliability: the quality of the training dataset and its model architecture. To this end, we create a human-annotated comparison dataset and train a generative model on it using ranking-based objectives. Extensive experiments on public ASQP datasets reveal that using our scorer can greatly and consistently improve the effectiveness of self-training. Moreover, we explore the possibility of replacing humans with large language models for comparison dataset annotation, and experiments demonstrate its feasibility. We release our code and data at https://github.com/HITSZ-HLT/ST-w-Scorer-ABSA .
- Abstract(参考訳): Aspect Sentiment Quad Prediction (ASQP) は、アスペクトベースの感情分析において最も代表的で困難なタスクである、与えられたレビューに対する全てのクワッド(アスペクト項、アスペクトカテゴリー、意見項、感情極性)を予測することを目的としている。
ASQPタスクにおける重要な課題はラベル付きデータの不足であり、既存のメソッドのパフォーマンスを制限している。
この課題に対処するために、擬似ラベルスコアラーを用いた自己学習フレームワークを提案し、スコアラがレビューと擬似ラベルの一致を評価し、ミスマッチを除去し、自己学習の有効性を高めることを目的とした。
スコアラの有効性と信頼性を保証するために、トレーニングデータセットの品質とモデルアーキテクチャの2つの重要な側面を強調します。
この目的のために、人間による注釈付き比較データセットを作成し、ランキングベースの目的を用いて生成モデルをトレーニングする。
公開ASQPデータセットの大規模な実験により、スコアラを使用することで、自己学習の有効性を大幅に改善できることが明らかになった。
さらに、比較データセットのアノテーションとして、人間を大きな言語モデルに置き換える可能性について検討し、その可能性を示す実験を行った。
コードとデータはhttps://github.com/HITSZ-HLT/ST-w-Scorer-ABSA で公開しています。
関連論文リスト
- In2Core: Leveraging Influence Functions for Coreset Selection in Instruction Finetuning of Large Language Models [37.45103473809928]
In2Coreアルゴリズムは,トレーニングモデルと評価サンプルの相関関係を解析し,コアセットを選択する。
LLMの微調整データにアルゴリズムを適用することで、トレーニングデータの50%で同様の性能を実現することができる。
論文 参考訳(メタデータ) (2024-08-07T05:48:05Z) - AlignDiff: Aligning Diverse Human Preferences via Behavior-Customisable
Diffusion Model [69.12623428463573]
AlignDiffは、人間の好みを定量化し、抽象性をカバーし、拡散計画をガイドする新しいフレームワークである。
ユーザがカスタマイズした動作と正確に一致し、効率的に切り替えることができます。
選好マッチング,スイッチング,カバーにおいて,他のベースラインに比べて優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-03T13:53:08Z) - Entailment as Robust Self-Learner [14.86757876218415]
我々は、複数の異なるNLUタスクを文脈的エンターテイメントとして定式化するプロンプト戦略を設計する。
自己学習における擬似ラベル品質向上のための簡易擬似ラベル編集(SimPLE)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-26T18:41:23Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Effective Robustness against Natural Distribution Shifts for Models with
Different Training Data [113.21868839569]
効果的ロバスト性」は、分配内(ID)性能から予測できる以上の余分な分配外ロバスト性を測定する。
異なるデータに基づいてトレーニングされたモデルの有効ロバスト性を評価・比較するための新しい評価指標を提案する。
論文 参考訳(メタデータ) (2023-02-02T19:28:41Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Enhancing Counterfactual Classification via Self-Training [9.484178349784264]
本研究では, 擬似ラベルによるランダム化試行をシミュレートするために, 観測データ中の有限未確認動作に対して, カテゴリ値で結果を示唆する自己学習アルゴリズムを提案する。
提案アルゴリズムは,合成データセットと実データセットの両方において有効であることを示す。
論文 参考訳(メタデータ) (2021-12-08T18:42:58Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
我々は,18の事前学習トランスフォーマーモデルから予測した29のデータセットを個別のテスト例で評価した。
Quoref、HellaSwag、MC-TACOは最先端のモデルを区別するのに最適である。
また、QAMRやSQuAD2.0のようなQAデータセットに使用されるスパン選択タスク形式は、強いモデルと弱いモデルとの差別化に有効である。
論文 参考訳(メタデータ) (2021-06-01T22:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。