Multi-Purpose NLP Chatbot : Design, Methodology & Conclusion
- URL: http://arxiv.org/abs/2310.08977v1
- Date: Fri, 13 Oct 2023 09:47:24 GMT
- Title: Multi-Purpose NLP Chatbot : Design, Methodology & Conclusion
- Authors: Shivom Aggarwal, Shourya Mehra, Pritha Mitra
- Abstract summary: This research paper provides a thorough analysis of the chatbots technology environment as it exists today.
It provides a very flexible system that makes use of reinforcement learning strategies to improve user interactions and conversational experiences.
The complexity of chatbots technology development is also explored in this study, along with the causes that have propelled these developments and their far-reaching effects on a range of sectors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With a major focus on its history, difficulties, and promise, this research
paper provides a thorough analysis of the chatbot technology environment as it
exists today. It provides a very flexible chatbot system that makes use of
reinforcement learning strategies to improve user interactions and
conversational experiences. Additionally, this system makes use of sentiment
analysis and natural language processing to determine user moods. The chatbot
is a valuable tool across many fields thanks to its amazing characteristics,
which include voice-to-voice conversation, multilingual support [12], advising
skills, offline functioning, and quick help features. The complexity of chatbot
technology development is also explored in this study, along with the causes
that have propelled these developments and their far-reaching effects on a
range of sectors. According to the study, three crucial elements are crucial:
1) Even without explicit profile information, the chatbot system is built to
adeptly understand unique consumer preferences and fluctuating satisfaction
levels. With the use of this capacity, user interactions are made to meet their
wants and preferences. 2) Using a complex method that interlaces Multiview
voice chat information, the chatbot may precisely simulate users' actual
experiences. This aids in developing more genuine and interesting discussions.
3) The study presents an original method for improving the black-box deep
learning models' capacity for prediction. This improvement is made possible by
introducing dynamic satisfaction measurements that are theory-driven, which
leads to more precise forecasts of consumer reaction.
Related papers
- LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
We propose a goal-oriented, persona-based method to automatically generate diverse multi-turn dialogues simulating human-chatbot interaction.
Our method can simulate human-chatbot dialogues with a high indistinguishability rate.
arXiv Detail & Related papers (2024-07-04T14:49:46Z) - Designing and Evaluating Multi-Chatbot Interface for Human-AI Communication: Preliminary Findings from a Persuasion Task [1.360607903399872]
This study examines the impact of multi-chatbot communication in a specific persuasion setting: promoting charitable donations.
We developed an online environment that enables multi-chatbot communication and conducted a pilot experiment.
We present our development process of the multi-chatbot interface and present preliminary findings from a pilot experiment.
arXiv Detail & Related papers (2024-06-28T04:33:41Z) - Measuring and Controlling Instruction (In)Stability in Language Model Dialogs [72.38330196290119]
System-prompting is a tool for customizing language-model chatbots, enabling them to follow a specific instruction.
We propose a benchmark to test the assumption, evaluating instruction stability via self-chats.
We reveal a significant instruction drift within eight rounds of conversations.
We propose a lightweight method called split-softmax, which compares favorably against two strong baselines.
arXiv Detail & Related papers (2024-02-13T20:10:29Z) - Creation Of A ChatBot Based On Natural Language Proccesing For Whatsapp [0.0]
The objective of this study is to develop a chatbots based on natural language processing to improve customer satisfaction and improve the quality of service provided by the company through WhatsApp.
The results of this study will provide a solid foundation for the design and development of effective chatbots for customer service.
arXiv Detail & Related papers (2023-10-10T18:54:15Z) - Developing Effective Educational Chatbots with ChatGPT prompts: Insights
from Preliminary Tests in a Case Study on Social Media Literacy (with
appendix) [43.55994393060723]
Recent advances in language learning models with zero-shot learning capabilities, such as ChatGPT, suggest a new possibility for developing educational chatbots.
We present a case study with a simple system that enables mixed-turn chatbots interactions.
We examine ChatGPT's ability to pursue multiple interconnected learning objectives, adapt the educational activity to users' characteristics, such as culture, age, and level of education, and its ability to use diverse educational strategies and conversational styles.
arXiv Detail & Related papers (2023-06-18T22:23:18Z) - A Deep Learning Approach to Integrate Human-Level Understanding in a
Chatbot [0.4632366780742501]
Unlike humans, chatbots can serve multiple customers at a time, are available 24/7 and reply in less than a fraction of a second.
We performed sentiment analysis, emotion detection, intent classification and named-entity recognition using deep learning to develop chatbots with humanistic understanding and intelligence.
arXiv Detail & Related papers (2021-12-31T22:26:41Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
Learning to converse using only a few examples is a great challenge in conversational AI.
The current best conversational models are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL)
We propose prompt-based few-shot learning which does not require gradient-based fine-tuning but instead uses a few examples as the only source of learning.
arXiv Detail & Related papers (2021-10-15T14:36:45Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
This paper proposes an innovative framework to train chatbots to possess human-like intentions.
Our framework included a guiding robot and an interlocutor model that plays the role of humans.
We examined our framework using three experimental setups and evaluate the guiding robot with four different metrics to demonstrated flexibility and performance advantages.
arXiv Detail & Related papers (2021-03-30T15:24:37Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
The research in cognitive science suggests that understanding is an essential signal for a high-quality chit-chat conversation.
Motivated by this, we propose P2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding.
arXiv Detail & Related papers (2020-04-11T12:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.