論文の概要: Faster 3D cardiac CT segmentation with Vision Transformers
- arxiv url: http://arxiv.org/abs/2310.09099v1
- Date: Fri, 13 Oct 2023 13:35:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 13:01:30.718057
- Title: Faster 3D cardiac CT segmentation with Vision Transformers
- Title(参考訳): 視覚トランスフォーマーを用いた高速3次元心臓ctセグメンテーション
- Authors: Lee Jollans, Mariana Bustamante, Lilian Henriksson, Anders Persson,
Tino Ebbers
- Abstract要約: Vision Transformer (ViT) は視野を広げ、グローバルな画像コンテキストの大部分を包含する。
我々のネットワークは、改良されたResNet50ブロックとViTブロックを組み込み、スキップ接続でカスケードを使用する。
モデル複雑性の増大にもかかわらず、我々のハイブリッドなTransformer-Residual U-NetフレームワークであるTRUNetは、残留するU-Netよりもはるかに少ない時間で収束する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate segmentation of the heart is essential for personalized blood flow
simulations and surgical intervention planning. A recent advancement in image
recognition is the Vision Transformer (ViT), which expands the field of view to
encompass a greater portion of the global image context. We adapted ViT for
three-dimensional volume inputs. Cardiac computed tomography (CT) volumes from
39 patients, featuring up to 20 timepoints representing the complete cardiac
cycle, were utilized. Our network incorporates a modified ResNet50 block as
well as a ViT block and employs cascade upsampling with skip connections.
Despite its increased model complexity, our hybrid Transformer-Residual U-Net
framework, termed TRUNet, converges in significantly less time than residual
U-Net while providing comparable or superior segmentations of the left
ventricle, left atrium, left atrial appendage, ascending aorta, and pulmonary
veins. TRUNet offers more precise vessel boundary segmentation and better
captures the heart's overall anatomical structure compared to residual U-Net,
as confirmed by the absence of extraneous clusters of missegmented voxels. In
terms of both performance and training speed, TRUNet exceeded U-Net, a commonly
used segmentation architecture, making it a promising tool for 3D semantic
segmentation tasks in medical imaging. The code for TRUNet is available at
github.com/ljollans/TRUNet.
- Abstract(参考訳): 心臓の正確な分節は、パーソナライズされた血流シミュレーションや外科的介入計画に不可欠である。
画像認識の最近の進歩はViT(Vision Transformer)であり、視野を広げてグローバルな画像コンテキストの大部分を包含する。
我々は3次元ボリューム入力にViTを適用した。
総心周期を表す最大20のタイムポイントを特徴とする39例の心電図(CT)量を利用した。
我々のネットワークは改良されたResNet50ブロックとViTブロックを備えており、スキップ接続によるカスケードアップサンプリングを採用している。
モデルの複雑さが増大しているにもかかわらず,trunetと呼ばれるハイブリッドu-netフレームワークは,左室,左心房,左心房追加,上行大動脈,肺静脈の分画を比較検討しながら,残存u-netよりもかなり少ない時間で収束する。
TRUNetは血管の境界セグメンテーションをより正確に提供し、残りのU-Netと比較して心臓全体の解剖学的構造をよりよく捉えている。
パフォーマンスとトレーニング速度の両面で、TRUNetは一般的に使用されているセグメンテーションアーキテクチャであるU-Netを超え、医用画像における3Dセグメンテーションタスクの有望なツールとなった。
TRUNetのコードはgithub.com/ljollans/TRUNetで入手できる。
関連論文リスト
- Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
本稿では,CU-Reg と呼ばれる,軽量でエンドツーエンドなカード・ツー・エンド・超音波フレーム・ツー・ボリューム・レジストレーション・ネットワークを提案する。
2次元スパースと3次元濃密な特徴の相互作用を増強するために,心内膜急速ガイドによる解剖学的手がかりを用い,その後,強化された特徴のボクセル的局所グロバル集約を行った。
論文 参考訳(メタデータ) (2024-06-20T17:47:30Z) - CIS-UNet: Multi-Class Segmentation of the Aorta in Computed Tomography
Angiography via Context-Aware Shifted Window Self-Attention [10.335899694123711]
大動脈セグメンテーションのためのディープラーニングモデルであるContext Infused Swin-UNet(CIS-UNet)を紹介する。
CIS-UNetは、CNNエンコーダ、対称デコーダ、スキップ接続、新しいコンテキスト対応シフトウィンドウ自己認識(CSW-SA)をボトルネックブロックとする階層型エンコーダデコーダ構造を採用している。
CIS-UNetは,従来のSwinUNetRセグメンテーションモデルよりも優れた平均Dice係数0.713を達成し,コンピュータ断層撮影(CT)の訓練を行った。
論文 参考訳(メタデータ) (2024-01-23T19:17:20Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
本稿では,高画質なセグメンテーションマスクと,パラメータ,計算コスト,推論速度の両面での効率性を提供するUNETR++という3次元医用画像セグメンテーション手法を提案する。
我々の設計の核となるのは、空間的およびチャネル的な識別的特徴を効率的に学習する、新しい効率的な対注意ブロック(EPA)の導入である。
Synapse, BTCV, ACDC, BRaTs, Decathlon-Lungの5つのベンチマークで評価した結果, 効率と精度の両面で, コントリビューションの有効性が示された。
論文 参考訳(メタデータ) (2022-12-08T18:59:57Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
本稿では,2次元から3次元のセグメンテーションフレームワークに対向的な性能検証ネットワークを導入する。
提案したネットワークは, 2次元粗い結果から3次元高品質なセグメンテーションマスクへの変換を行い, 共同最適化によりセグメンテーション精度が向上する。
NIH膵分節データセットの実験では、提案したネットワークが小臓器分節の最先端の精度を達成し、過去の最高性能を上回った。
論文 参考訳(メタデータ) (2022-04-16T18:00:29Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest
CT Images [1.8692254863855962]
胸部CT画像から肺血管セグメンテーションの枠組みと改善過程について検討した。
アプローチの鍵となるのは、3つの軸から2.5D区分けネットワークを応用し、堅牢で完全に自動化された肺血管区分け結果を示す。
提案手法は,他のネットワーク構造よりも大きなマージンで優れ,平均DICEスコア0.9272,精度0.9310を極端に上回っている。
論文 参考訳(メタデータ) (2021-07-03T21:46:29Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
畳み込みニューラルネットワーク(CNN)は、現代の3D医療画像セグメンテーションのデファクトスタンダードとなっている。
本稿では,bf畳み込みニューラルネットワークとbfトランスbf(cotr)を効率良く橋渡しし,正確な3次元医用画像分割を実現する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T13:34:22Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z) - PC-U Net: Learning to Jointly Reconstruct and Segment the Cardiac Walls
in 3D from CT Data [18.941064150226236]
2次元CTスライスから直接LV MYO壁の点雲を直接再構成するPC-Uネットを提案する。
提案したPC-Uネットの協調学習フレームワークは,自動心画像解析タスクに有用である。
論文 参考訳(メタデータ) (2020-08-18T23:37:05Z) - CondenseUNet: A Memory-Efficient Condensely-Connected Architecture for
Bi-ventricular Blood Pool and Myocardium Segmentation [0.0]
本稿では,CondenseNetとDenseNetの両方を改良したメモリ効率の良い畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
実験の結果,提案アーキテクチャは自動心臓診断チャレンジデータセット上で動作していることがわかった。
論文 参考訳(メタデータ) (2020-04-05T16:34:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。