論文の概要: A Deep Neural Network -- Mechanistic Hybrid Model to Predict
Pharmacokinetics in Rat
- arxiv url: http://arxiv.org/abs/2310.09167v2
- Date: Tue, 2 Jan 2024 11:48:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 19:37:38.259292
- Title: A Deep Neural Network -- Mechanistic Hybrid Model to Predict
Pharmacokinetics in Rat
- Title(参考訳): ラットの薬物動態予測のためのディープニューラルネットワーク-機械ハイブリッドモデル
- Authors: Florian F\"uhrer, Andrea Gruber, Holger Diedam, Andreas H. G\"oller,
Stephan Menz, Sebastian Schneckener
- Abstract要約: 本研究では, 先に開発したハイブリッドモデルを改良する。
口腔全露出の中央値は2.85から2.35に減少し,静脈内投与は1.95から1.62に低下した。
純粋な機械学習モデルとは対照的に、我々のモデルはトレーニングされていない新しいエンドポイントを予測することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An important aspect in the development of small molecules as drugs or
agro-chemicals is their systemic availability after intravenous and oral
administration. The prediction of the systemic availability from the chemical
structure of a potential candidate is highly desirable, as it allows to focus
the drug or agrochemical development on compounds with a favorable kinetic
profile. However, such pre-dictions are challenging as the availability is the
result of the complex interplay between molecular properties, biology and
physiology and training data is rare. In this work we improve the hybrid model
developed earlier [1]. We reduce the median fold change error for the total
oral exposure from 2.85 to 2.35 and for intravenous administration from 1.95 to
1.62. This is achieved by training on a larger data set, improving the neural
network architecture as well as the parametrization of mechanistic model.
Further, we extend our approach to predict additional endpoints and to handle
different covariates, like sex and dosage form. In contrast to a pure machine
learning model, our model is able to predict new end points on which it has not
been trained. We demonstrate this feature by predicting the exposure over the
first 24h, while the model has only been trained on the total exposure.
- Abstract(参考訳): 薬物やアグロケミカルなどの小分子の開発における重要な側面は、静脈内および経口投与後の全身投与である。
候補候補の化学構造から体系的可用性を予測することは非常に望ましいものであり、薬物や農薬の発達を好適な運動プロファイルを持つ化合物に焦点を合わせることができる。
しかし, 分子特性, 生物学, 生理学, トレーニングデータとの複雑な相互作用の結果, 可用性は極めて困難である。
本研究では, 先行する [1] のハイブリッドモデルを改良する。
口腔全露出の中央値は2.85から2.35に減少し,静脈内投与は1.95から1.62に減少した。
これは、より大きなデータセットのトレーニング、ニューラルネットワークアーキテクチャの改善、および機械モデルのパラメータ化によって達成される。
さらに私たちは,新たなエンドポイントの予測や,セックスやドセージフォームなど,さまざまなコ変量を扱うためのアプローチを拡張しています。
純粋な機械学習モデルとは対照的に、我々のモデルはトレーニングされていない新しいエンドポイントを予測することができる。
最初の24時間で露光を予測することで,この特徴を実証する一方,モデルは全露光でのみ訓練されている。
関連論文リスト
- Stacked ensemble\-based mutagenicity prediction model using multiple modalities with graph attention network [0.9736758288065405]
変異原性は、様々なネガティブな結果をもたらす遺伝子変異と関連しているため、懸念される。
本研究では,新しいアンサンブルに基づく変異原性予測モデルを提案する。
論文 参考訳(メタデータ) (2024-09-03T09:14:21Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiffは、事前訓練されたターゲット拡散モデルと望ましい機能特性を整合させる新しいフレームワークである。
最先端の結合エネルギーを持つ分子を最大7.07 Avg. Vina Scoreで生成することができる。
論文 参考訳(メタデータ) (2024-07-01T06:10:29Z) - YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
伝統的な手法は複雑な分子構造を見逃し、不正確な結果をもたらすことが多い。
本稿では,グラフ畳み込みネットワーク(GCN),トランスフォーマーアーキテクチャ,Long Short-Term Memory(LSTM)ネットワークを統合するディープラーニングフレームワークであるYZS-Modelを紹介する。
YZS-Modelは、R2$ 0.59、RMSE$ 0.57を達成し、ベンチマークモデルを上回った。
論文 参考訳(メタデータ) (2024-06-27T12:40:29Z) - Discovering intrinsic multi-compartment pharmacometric models using Physics Informed Neural Networks [0.0]
我々は、純粋にデータ駆動型ニューラルネットワークモデルであるPKINNを紹介する。
PKINNは、本質的なマルチコンパートメントベースの薬理学構造を効率的に発見し、モデル化する。
得られたモデルは、シンボリック回帰法によって解釈可能であり、説明可能である。
論文 参考訳(メタデータ) (2024-04-30T19:31:31Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
AIによる薬物発見の大きな課題は、高品質なデータの不足である。
薬物動態の4つの重要なパラメータを同時に予測するPEMAL法を開発した。
実験の結果,PEMALは一般的なグラフニューラルネットワークに比べてデータ需要を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-04-16T07:42:55Z) - SAF: Smart Aggregation Framework for Revealing Atoms Importance Rank and
Improving Prediction Rates in Drug Discovery [0.0]
分子を表現するための成功したアプローチは、それらをグラフとして扱い、グラフニューラルネットワークを利用することである。
本稿ではボルツマン分布を用いて各原子を非線形に重み付けする新しい凝集法を提案する。
この重み付けアグリゲーションを用いることで、抗生物質活性を予測するためのゴールド標準メッセージパスニューラルネットワークの能力が向上することを示す。
論文 参考訳(メタデータ) (2023-09-12T22:04:24Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph-Based Deep Learning [40.83037811977803]
Dynaformerは、タンパク質-リガンド結合親和性を予測するために開発されたグラフベースのディープラーニングモデルである。
CASF-2016ベンチマークデータセットでは、最先端のスコアとランキングの能力を示している。
熱ショックタンパク質90(HSP90)の仮想スクリーニングにおいて、20の候補を同定し、それらの結合親和性を実験的に検証する。
論文 参考訳(メタデータ) (2022-08-19T14:55:12Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
Deep Relationsは物理にインスパイアされた、本質的に説明可能なアーキテクチャを持つディープリレーショナルネットワークである。
それは最先端技術に対する優れた解釈可能性を示している。
接触予測 9.5, 16.9, 19.3, 5.7 倍の AUPRC をテスト用、複合ユニク、タンパク質ユニク、両ユニクセットで強化する。
論文 参考訳(メタデータ) (2019-12-29T00:14:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。