論文の概要: From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph-Based Deep Learning
- arxiv url: http://arxiv.org/abs/2208.10230v4
- Date: Mon, 2 Sep 2024 07:10:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 23:16:54.093941
- Title: From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph-Based Deep Learning
- Title(参考訳): 静的構造から動的構造へ:グラフに基づくディープラーニングによる結合親和性予測の改善
- Authors: Yaosen Min, Ye Wei, Peizhuo Wang, Xiaoting Wang, Han Li, Nian Wu, Stefan Bauer, Shuxin Zheng, Yu Shi, Yingheng Wang, Ji Wu, Dan Zhao, Jianyang Zeng,
- Abstract要約: Dynaformerは、タンパク質-リガンド結合親和性を予測するために開発されたグラフベースのディープラーニングモデルである。
CASF-2016ベンチマークデータセットでは、最先端のスコアとランキングの能力を示している。
熱ショックタンパク質90(HSP90)の仮想スクリーニングにおいて、20の候補を同定し、それらの結合親和性を実験的に検証する。
- 参考スコア(独自算出の注目度): 40.83037811977803
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate prediction of protein-ligand binding affinities is an essential challenge in structure-based drug design. Despite recent advances in data-driven methods for affinity prediction, their accuracy is still limited, partially because they only take advantage of static crystal structures while the actual binding affinities are generally determined by the thermodynamic ensembles between proteins and ligands. One effective way to approximate such a thermodynamic ensemble is to use molecular dynamics (MD) simulation. Here, an MD dataset containing 3,218 different protein-ligand complexes is curated, and Dynaformer, a graph-based deep learning model is further developed to predict the binding affinities by learning the geometric characteristics of the protein-ligand interactions from the MD trajectories. In silico experiments demonstrated that the model exhibits state-of-the-art scoring and ranking power on the CASF-2016 benchmark dataset, outperforming the methods hitherto reported. Moreover, in a virtual screening on heat shock protein 90 (HSP90) using Dynaformer, 20 candidates are identified and their binding affinities are further experimentally validated. Dynaformer displayed promising results in virtual drug screening, revealing 12 hit compounds (two are in the submicromolar range), including several novel scaffolds. Overall, these results demonstrated that the approach offer a promising avenue for accelerating the early drug discovery process.
- Abstract(参考訳): タンパク質-リガンド結合親和性の正確な予測は、構造に基づく薬物設計において重要な課題である。
データ駆動型アフィニティ予測法が近年進歩しているにもかかわらず、その精度は限定的であり、これは静的結晶構造のみを利用するのに対し、実際の結合親和性はタンパク質とリガンドの間の熱力学的アンサンブルによって決定されるためである。
そのような熱力学的アンサンブルを近似する効果的な方法は分子動力学(MD)シミュレーションを使用することである。
そこで,3,218個のタンパク質-リガンド複合体を含むMDデータセットをキュレートし,MD軌道からタンパク質-リガンド相互作用の幾何学的特徴を学習することにより結合親和性を予測するグラフベースディープラーニングモデルDynaformerを開発した。
サイリコ実験では、このモデルがCASF-2016ベンチマークデータセット上で最先端のスコアとランキングの能力を示し、報告された手法よりも優れていた。
さらに、Dynaformerを用いた熱ショックタンパク質90(HSP90)の仮想スクリーニングにおいて、20の候補を同定し、それらの結合親和性をさらに実験的に検証する。
ダイナフォーマーは、仮想薬物スクリーニングの有望な結果を示し、新しい足場を含む12のヒット化合物(2つはマイクロモルの範囲内)を明らかにした。
これらの結果は、この手法が初期の薬物発見プロセスの加速に有望な道を提供することを示した。
関連論文リスト
- BAPULM: Binding Affinity Prediction using Language Models [7.136205674624813]
本稿では,ProtT5-XL-U50およびMollFormerを介してタンパク質の化学潜伏表現を利用する,革新的な配列ベースフレームワークであるBAPULMを紹介する。
提案手法は,ベンチマーク1k2101, Test2016_290, CSAR-HiQ_36でそれぞれ0.925 $pm$0.043, 0.914 $pm$0.004, 0.8132 $pm$0.0001のシーケンシャルスコアリングパワー(R)値を達成した。
論文 参考訳(メタデータ) (2024-11-06T04:35:30Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - SPIN: SE(3)-Invariant Physics Informed Network for Binding Affinity Prediction [3.406882192023597]
タンパク質-リガンド結合親和性の正確な予測は、薬物開発に不可欠である。
伝統的な手法は、しばしば複合体の空間情報を正確にモデル化するのに失敗する。
この課題に適用可能な様々な帰納バイアスを組み込んだモデルSPINを提案する。
論文 参考訳(メタデータ) (2024-07-10T08:40:07Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive
Molecular Property Prediction [1.534667887016089]
多パラメータ持続ホモロジー(MPPH)を用いた新しい分子指紋生成法を提案する。
この技術は、正確な分子特性予測が不可欠である薬物発見と材料科学において、かなりの重要性を持っている。
分子特性の予測における既存の最先端手法よりも優れた性能を示し,MoleculeNetベンチマークで広範囲な評価を行った。
論文 参考訳(メタデータ) (2023-12-12T09:33:54Z) - PIGNet2: A Versatile Deep Learning-based Protein-Ligand Interaction
Prediction Model for Binding Affinity Scoring and Virtual Screening [0.0]
タンパク質-リガンド相互作用の予測(PLI)は、薬物発見において重要な役割を果たす。
結合親和性を正確に評価し、効率的な仮想スクリーニングを行う汎用モデルの開発は依然として課題である。
本稿では、物理インフォームドグラフニューラルネットワークと組み合わせて、新しいデータ拡張戦略を導入することにより、実現可能なソリューションを提案する。
論文 参考訳(メタデータ) (2023-07-03T14:46:49Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Widely Used and Fast De Novo Drug Design by a Protein Sequence-Based
Reinforcement Learning Model [4.815696666006742]
構造に基づくde novo法は、薬物と標的の相互作用を深く生成するアーキテクチャに組み込むことによって、アクティブなデータ不足を克服することができる。
本稿では,医薬品発見のためのタンパク質配列に基づく拡張学習モデルについて紹介する。
概念実証として、RLモデルを用いて分子を4つのターゲットに設計した。
論文 参考訳(メタデータ) (2022-08-14T10:41:52Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
本稿では,3方向トランスフォーマーアーキテクチャを用いて分子間情報をモデル化する手法を提案する。
分子間グラフ変換器(IGT)は、それぞれ、結合活性と結合ポーズ予測の2番目のベストに対して、最先端のアプローチを9.1%と20.5%で上回っている。
IGTはSARS-CoV-2に対して有望な薬物スクリーニング能力を示す。
論文 参考訳(メタデータ) (2021-10-14T13:28:02Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
Deep Relationsは物理にインスパイアされた、本質的に説明可能なアーキテクチャを持つディープリレーショナルネットワークである。
それは最先端技術に対する優れた解釈可能性を示している。
接触予測 9.5, 16.9, 19.3, 5.7 倍の AUPRC をテスト用、複合ユニク、タンパク質ユニク、両ユニクセットで強化する。
論文 参考訳(メタデータ) (2019-12-29T00:14:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。