Time CNN and Graph Convolution Network for Epileptic Spike Detection in
MEG Data
- URL: http://arxiv.org/abs/2310.09236v1
- Date: Fri, 13 Oct 2023 16:40:29 GMT
- Title: Time CNN and Graph Convolution Network for Epileptic Spike Detection in
MEG Data
- Authors: Pauline Mouches, Thibaut Dejean, Julien Jung, Romain Bouet, Carole
Lartizien, Romain Quentin
- Abstract summary: We propose a 1D temporal convolutional neural network (Time CNN) coupled with a graph convolutional network (GCN) to classify short time frames of MEG recording as containing a spike or not.
Our models produce clinically relevant results and outperform deep learning-based state-of-the-art methods reaching a classification f1-score of 76.7% on a balanced dataset and of 25.5% on a realistic, highly imbalanced dataset.
- Score: 1.9420255676093532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetoencephalography (MEG) recordings of patients with epilepsy exhibit
spikes, a typical biomarker of the pathology. Detecting those spikes allows
accurate localization of brain regions triggering seizures. Spike detection is
often performed manually. However, it is a burdensome and error prone task due
to the complexity of MEG data. To address this problem, we propose a 1D
temporal convolutional neural network (Time CNN) coupled with a graph
convolutional network (GCN) to classify short time frames of MEG recording as
containing a spike or not. Compared to other recent approaches, our models have
fewer parameters to train and we propose to use a GCN to account for MEG
sensors spatial relationships. Our models produce clinically relevant results
and outperform deep learning-based state-of-the-art methods reaching a
classification f1-score of 76.7% on a balanced dataset and of 25.5% on a
realistic, highly imbalanced dataset, for the spike class.
Related papers
- REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Integrative Deep Learning Framework for Parkinson's Disease Early Detection using Gait Cycle Data Measured by Wearable Sensors: A CNN-GRU-GNN Approach [0.3222802562733786]
We present a pioneering deep learning architecture tailored for the binary classification of subjects.
Our model harnesses the power of 1D-Convolutional Neural Networks (CNN), Gated Recurrent Units (GRU), and Graph Neural Network (GNN) layers.
Our proposed model achieves exceptional performance metrics, boasting accuracy, precision, recall, and F1 score values of 99.51%, 99.57%, 99.71%, and 99.64%, respectively.
arXiv Detail & Related papers (2024-04-09T15:19:13Z) - Improving self-supervised pretraining models for epileptic seizure
detection from EEG data [0.23624125155742057]
This paper presents various self-supervision strategies to enhance the performance of a time-series based Diffusion convolution neural network (DCRNN) model.
The learned weights in the self-supervision pretraining phase can be transferred to the supervised training phase to boost the model's prediction capability.
arXiv Detail & Related papers (2022-06-28T17:15:49Z) - Longitudinal detection of new MS lesions using Deep Learning [0.0]
We describe a deep-learning-based pipeline addressing the task of detecting and segmenting new MS lesions.
First, we propose to use transfer-learning from a model trained on a segmentation task using single time-points.
Second, we propose a data synthesis strategy to generate realistic longitudinal time-points with new lesions.
arXiv Detail & Related papers (2022-06-16T16:09:04Z) - A complex network approach to time series analysis with application in
diagnosis of neuromuscular disorders [1.9659095632676098]
This paper proposes a new approach to network development named GraphTS to overcome the limited accuracy of existing methods.
For this purpose, EMG signals are pre-processed and mapped to a complex network by a standard visibility graph algorithm.
The resulting networks can differentiate between healthy and patient samples.
arXiv Detail & Related papers (2021-08-16T06:44:48Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Automated freezing of gait assessment with marker-based motion capture
and deep learning approaches expert-level detection [0.9103175498038585]
This paper proposes a motion capture-based FOG assessment method driven by a novel deep neural network.
The proposed network, termed multi-stage graph convolutional network (MS-GCN), combines the spatial-temporal graph convolutional network (ST-GCN) and the multi-stage temporal convolutional network (MS-TCN)
Experiments indicate that the proposed model outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2021-03-29T09:32:45Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Finding Patient Zero: Learning Contagion Source with Graph Neural
Networks [67.3415507211942]
Locating the source of an epidemic can provide critical insights into the infection's transmission course.
Existing methods use graph-theoretic measures and expensive message-passing algorithms.
We revisit this problem using graph neural networks (GNNs) to learn P0.
arXiv Detail & Related papers (2020-06-21T21:12:44Z) - Assessing Graph-based Deep Learning Models for Predicting Flash Point [52.931492216239995]
Graph-based deep learning (GBDL) models were implemented in predicting flash point for the first time.
Average R2 and Mean Absolute Error (MAE) scores of MPNN are, respectively, 2.3% lower and 2.0 K higher than previous comparable studies.
arXiv Detail & Related papers (2020-02-26T06:10:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.