Automated freezing of gait assessment with marker-based motion capture
and deep learning approaches expert-level detection
- URL: http://arxiv.org/abs/2103.15449v1
- Date: Mon, 29 Mar 2021 09:32:45 GMT
- Title: Automated freezing of gait assessment with marker-based motion capture
and deep learning approaches expert-level detection
- Authors: Benjamin Filtjens, Pieter Ginis, Alice Nieuwboer, Peter Slaets, and
Bart Vanrumste
- Abstract summary: This paper proposes a motion capture-based FOG assessment method driven by a novel deep neural network.
The proposed network, termed multi-stage graph convolutional network (MS-GCN), combines the spatial-temporal graph convolutional network (ST-GCN) and the multi-stage temporal convolutional network (MS-TCN)
Experiments indicate that the proposed model outperforms state-of-the-art baselines.
- Score: 0.9103175498038585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Freezing of gait (FOG) is a common and debilitating gait impairment in
Parkinson's disease. Further insight in this phenomenon is hampered by the
difficulty to objectively assess FOG. To meet this clinical need, this paper
proposes a motion capture-based FOG assessment method driven by a novel deep
neural network. The proposed network, termed multi-stage graph convolutional
network (MS-GCN), combines the spatial-temporal graph convolutional network
(ST-GCN) and the multi-stage temporal convolutional network (MS-TCN). The
ST-GCN captures the hierarchical motion among the optical markers inherent to
motion capture, while the multi-stage component reduces over-segmentation
errors by refining the predictions over multiple stages. The proposed model was
validated on a dataset of fourteen freezers, fourteen non-freezers, and
fourteen healthy control subjects. The experiments indicate that the proposed
model outperforms state-of-the-art baselines. An in-depth quantitative and
qualitative analysis demonstrates that the proposed model is able to achieve
clinician-like FOG assessment. The proposed MS-GCN can provide an automated and
objective alternative to labor-intensive clinician-based FOG assessment.
Related papers
- Time CNN and Graph Convolution Network for Epileptic Spike Detection in
MEG Data [1.9420255676093532]
We propose a 1D temporal convolutional neural network (Time CNN) coupled with a graph convolutional network (GCN) to classify short time frames of MEG recording as containing a spike or not.
Our models produce clinically relevant results and outperform deep learning-based state-of-the-art methods reaching a classification f1-score of 76.7% on a balanced dataset and of 25.5% on a realistic, highly imbalanced dataset.
arXiv Detail & Related papers (2023-10-13T16:40:29Z) - Membrane Potential Distribution Adjustment and Parametric Surrogate
Gradient in Spiking Neural Networks [3.485537704990941]
Surrogate gradient (SG) strategy is investigated and applied to circumvent this issue and train SNNs from scratch.
We propose the parametric surrogate gradient (PSG) method to iteratively update SG and eventually determine an optimal surrogate gradient parameter.
Experimental results demonstrate that the proposed methods can be readily integrated with backpropagation through time (BPTT) algorithm.
arXiv Detail & Related papers (2023-04-26T05:02:41Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world.
At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19.
We propose a boundary guided semantic learning network (BSNet) in this paper.
arXiv Detail & Related papers (2022-09-07T05:01:38Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Convolutional Neural Network to Restore Low-Dose Digital Breast
Tomosynthesis Projections in a Variance Stabilization Domain [15.149874383250236]
convolution neural network (CNN) proposed to restore low-dose (LD) projections to image quality equivalent to a standard full-dose (FD) acquisition.
Network achieved superior results in terms of the mean squared error (MNSE), normalized training time and noise spatial correlation compared with networks trained with traditional data-driven methods.
arXiv Detail & Related papers (2022-03-22T13:31:47Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Circumpapillary OCT-Focused Hybrid Learning for Glaucoma Grading Using
Tailored Prototypical Neural Networks [1.1601676598120785]
Glaucoma is one of the leading causes of blindness worldwide.
We propose, for the first time, a novel framework for glaucoma grading using raw circumpapillary B-scans.
In particular, we set out a new OCT-based hybrid network which combines hand-driven and deep learning algorithms.
arXiv Detail & Related papers (2021-06-25T10:53:01Z) - Towards Unbiased COVID-19 Lesion Localisation and Segmentation via
Weakly Supervised Learning [66.36706284671291]
We propose a data-driven framework supervised by only image-level labels to support unbiased lesion localisation.
The framework can explicitly separate potential lesions from original images, with the help of a generative adversarial network and a lesion-specific decoder.
arXiv Detail & Related papers (2021-03-01T06:05:49Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Automated Prostate Cancer Diagnosis Based on Gleason Grading Using
Convolutional Neural Network [12.161266795282915]
We propose a convolutional neural network (CNN)-based automatic classification method for accurate grading of prostate cancer (PCa) using whole slide histopathology images.
A data augmentation method named Patch-Based Image Reconstruction (PBIR) was proposed to reduce the high resolution and increase the diversity of WSIs.
A distribution correction module was developed to enhance the adaption of pretrained model to the target dataset.
arXiv Detail & Related papers (2020-11-29T06:42:08Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.