論文の概要: LawLLM: Law Large Language Model for the US Legal System
- arxiv url: http://arxiv.org/abs/2407.21065v1
- Date: Sat, 27 Jul 2024 21:51:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 19:45:44.177830
- Title: LawLLM: Law Large Language Model for the US Legal System
- Title(参考訳): LawLLM:アメリカの法律体系のための法律大言語モデル
- Authors: Dong Shu, Haoran Zhao, Xukun Liu, David Demeter, Mengnan Du, Yongfeng Zhang,
- Abstract要約: 我々は,米国法域に特化して設計されたマルチタスクモデルであるLawLLM(Law Large Language Model)を紹介する。
類似症例検索(SCR)、PCR(Precedent Case Recommendation)、LJP(Lawal Judgment Prediction)においてLawLLMが優れている
そこで本研究では,各タスクに対して,生の法定データをトレーニング可能な形式に変換する,カスタマイズされたデータ前処理手法を提案する。
- 参考スコア(独自算出の注目度): 43.13850456765944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the rapidly evolving field of legal analytics, finding relevant cases and accurately predicting judicial outcomes are challenging because of the complexity of legal language, which often includes specialized terminology, complex syntax, and historical context. Moreover, the subtle distinctions between similar and precedent cases require a deep understanding of legal knowledge. Researchers often conflate these concepts, making it difficult to develop specialized techniques to effectively address these nuanced tasks. In this paper, we introduce the Law Large Language Model (LawLLM), a multi-task model specifically designed for the US legal domain to address these challenges. LawLLM excels at Similar Case Retrieval (SCR), Precedent Case Recommendation (PCR), and Legal Judgment Prediction (LJP). By clearly distinguishing between precedent and similar cases, we provide essential clarity, guiding future research in developing specialized strategies for these tasks. We propose customized data preprocessing techniques for each task that transform raw legal data into a trainable format. Furthermore, we also use techniques such as in-context learning (ICL) and advanced information retrieval methods in LawLLM. The evaluation results demonstrate that LawLLM consistently outperforms existing baselines in both zero-shot and few-shot scenarios, offering unparalleled multi-task capabilities and filling critical gaps in the legal domain.
- Abstract(参考訳): 急速に発展する法律分析の分野では、専門用語、複雑な構文、歴史的文脈を含む法律言語の複雑さのために、関連する事例を見つけ、正確な司法結果を予測することは困難である。
さらに、類似事例と前例事例の微妙な区別は、法的な知識の深い理解を必要とする。
研究者はしばしばこれらの概念を詳述し、これらの微妙なタスクに効果的に対処する専門的な技術を開発するのが困難になる。
本稿では,これらの課題に対処するために,米国法域を対象としたマルチタスクモデルであるLawLLMを紹介する。
LawLLMは、SCR(Simisal Case Retrieval)、PCR(Precedent Case Recommendation)、LJP(Lawal Judgment Prediction)で優れている。
本研究は,前例と類似事例を明確に区別することにより,これらの課題の専門戦略開発における今後の研究の指針となる重要な明確性を提供する。
そこで本研究では,各タスクに対して,生の法定データをトレーニング可能な形式に変換する,カスタマイズされたデータ前処理手法を提案する。
また,LawLLMでは,インコンテキスト学習(ICL)や高度な情報検索手法も採用している。
評価結果は、LawLLMがゼロショットと少数ショットの両方のシナリオにおいて既存のベースラインを一貫して上回り、重複しないマルチタスク機能を提供し、法域における重要なギャップを埋めていることを示している。
関連論文リスト
- InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval [18.058942674792604]
本稿では,訴訟の関連判断に適した新規な数ショットワークフローを提案する。
LLMと人的専門家の関連判断を比較することで,信頼性の高い関連判断が得られたことを実証的に示す。
論文 参考訳(メタデータ) (2024-03-27T09:46:56Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - Prototype-Based Interpretability for Legal Citation Prediction [16.660004925391842]
我々は、前例と立法規定の両方に関して、弁護士の思考過程と平行してタスクを設計する。
最初の実験結果から,法の専門家のフィードバックを得て,対象の引用予測を洗練する。
我々は,弁護士が使用する決定パラメータに固執しながら,高い性能を達成し,解釈可能性を高めるためのプロトタイプアーキテクチャを導入する。
論文 参考訳(メタデータ) (2023-05-25T21:40:58Z) - CaseEncoder: A Knowledge-enhanced Pre-trained Model for Legal Case
Encoding [15.685369142294693]
CaseEncoderは、データサンプリングと事前トレーニングフェーズの両方において、きめ細かい法的な知識を活用する法律文書エンコーダである。
CaseEncoderは、ゼロショットの判例検索において、既存の一般的な事前訓練モデルと法律固有の事前訓練モデルの両方を著しく上回っている。
論文 参考訳(メタデータ) (2023-05-09T12:40:19Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Legal Element-oriented Modeling with Multi-view Contrastive Learning for
Legal Case Retrieval [3.909749182759558]
本稿では,多視点コントラスト学習目標を用いた訴訟検索のための対話型ネットワークを提案する。
ケースビューコントラスト学習は、関連する訴訟表現の間の隠れた空間距離を最小化する。
ケースの法的な要素を検出するために、法的な要素の知識を意識した指標を用いています。
論文 参考訳(メタデータ) (2022-10-11T06:47:23Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。