Single-molecule motion control
- URL: http://arxiv.org/abs/2310.09296v2
- Date: Mon, 17 Jun 2024 09:54:32 GMT
- Title: Single-molecule motion control
- Authors: Divyam Neer Verma, KV Chinmaya, Jan Heck, G Mohan Rao, Sonia Contera, Moumita Ghosh, Siddharth Ghosh,
- Abstract summary: We present a toy model for controlling single-molecule diffusion by harnessing forces from elementary surface electrostatic charges within a lattice structure.
We find that surface charge density critically influences diffusion, exhibiting linear scaling akin to Coulombic forces.
The molecular trajectories predicted by our model bear resemblance to planetary motion, particularly in their gravity-assisted acceleration-like behaviour.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Achieving dynamic manipulation and control of single molecules at high spatio-temporal resolution is pivotal for advancing atomic-scale computing and nanorobotics. However, this endeavour is critically challenged by complex nature of atomic and molecular interactions, high-dimensional characteristics of nanoscale systems, and scarcity of experimental data. Here, we present a toy model for controlling single-molecule diffusion by harnessing electrostatic forces arising from elementary surface charges within a lattice structure, mimicking embedded charges on a surface. We investigate the interplay between quantum mechanics and electrostatic interactions in single molecule diffusion processes using a combination of state-dependent diffusion equations and Green's functions. We find that surface charge density critically influences diffusion coefficients, exhibiting linear scaling akin to Coulombic forces. We achieve accurate predictions of experimental diffusion constants and extending the observed range to values reaching up to 6000 $\mu\text{m}^2\text{ms}^{-1}$ and 80000 $\mu\text{m}^2\text{ms}^{-1}$. The molecular trajectories predicted by our model bear resemblance to planetary motion, particularly in their gravity-assisted acceleration-like behaviour. It holds transformative implications for nanorobotics, motion control at the nanoscale, and computing applications, particularly in the areas of molecular and quantum computing where the trapping of atoms and molecules is essential. Beyond the state-of-the-art optical lattice and scanning tunnelling microscopy for atomic/molecular manipulation, our findings give unambiguous advantage of precise control over single-molecule dynamics through quantum manipulation at the angstrom scale.
Related papers
- Extending the Tavis-Cummings model for molecular ensembles -- Exploring the effects of dipole self energies and static dipole moments [0.0]
We extend the Tavis-Cummings model for molecular ensembles.
We simulate excited-state dynamics and spectroscopy of MgH$+$ molecules resonantly coupled to an optical cavity.
arXiv Detail & Related papers (2024-04-16T15:58:40Z) - Cavity-Catalyzed Hydrogen Transfer Dynamics in an Entangled Molecular
Ensemble under Vibrational Strong Coupling [0.0]
We numerically solve the Schr"odinger equation to study the cavity-induced quantum dynamics in an ensemble of molecules.
We show that the cavity indeed enforces hydrogen transfer from an enol to an enethiol configuration with transfer rates significantly increasing with light-matter interaction strength.
A non-trivial dependence of the dynamics on ensemble size is found, clearly beyond scaled single-molecule models.
arXiv Detail & Related papers (2023-01-10T16:58:57Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Surface-induced decoherence and heating of charged particles [0.0]
We provide a theoretical toolbox for describing how the rotational and translational quantum dynamics of charged nano- to microscale objects is affected by near metallic and dielectric surfaces.
The resulting quantum master equations describe the coherent surface-particle interaction, due to image charges and Casimir-Polder potentials, as well as surface-induced decoherence and heating.
arXiv Detail & Related papers (2022-03-28T20:49:42Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Feynman-Enderlein Path Integral for Single-Molecule Nanofluidics [0.0]
Single-molecule motions in the nanofluidic domain are difficult to characterise because of complex physical and physicochemical interactions.
We present a method for quasi-one-dimensional sub-diffraction-limited nanofluidic motions of fluorescent single molecules using the Feynman-Enderlein path integral approach.
arXiv Detail & Related papers (2021-02-22T11:33:29Z) - Predicting molecular dipole moments by combining atomic partial charges
and atomic dipoles [3.0980025155565376]
"MuML" models are fitted together to reproduce molecular $boldsymbolmu$ computed using high-level coupled-cluster theory.
We demonstrate that the uncertainty in the predictions can be estimated reliably using a calibrated committee model.
arXiv Detail & Related papers (2020-03-27T14:35:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.