Surface-induced decoherence and heating of charged particles
- URL: http://arxiv.org/abs/2203.15088v1
- Date: Mon, 28 Mar 2022 20:49:42 GMT
- Title: Surface-induced decoherence and heating of charged particles
- Authors: Lukas Martinetz, Klaus Hornberger and Benjamin A. Stickler
- Abstract summary: We provide a theoretical toolbox for describing how the rotational and translational quantum dynamics of charged nano- to microscale objects is affected by near metallic and dielectric surfaces.
The resulting quantum master equations describe the coherent surface-particle interaction, due to image charges and Casimir-Polder potentials, as well as surface-induced decoherence and heating.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Levitating charged particles in ultra-high vacuum provides a preeminent
platform for quantum information processing, for quantum-enhanced force and
torque sensing, for probing physics beyond the standard model, and for
high-mass tests of the quantum superposition principle. Existing setups range
from single atomic ions, to ion chains and crystals, to charged molecules and
nanoparticles. Future technological applications of such quantum systems will
be crucially affected by fluctuating electric fields emanating from nearby
electrodes, which interact with the levitated particles' monopole and higher
charge moments. In this article, we provide a theoretical toolbox for
describing how the rotational and translational quantum dynamics of charged
nano- to microscale objects is affected by near metallic and dielectric
surfaces, as characterized by their macroscopic dielectric response. The
resulting quantum master equations describe the coherent surface-particle
interaction, due to image charges and Casimir-Polder potentials, as well as
surface-induced decoherence and heating, with the experimentally observed
frequency and distance scaling. We explicitly evaluate the master equations for
typical charge distributions and types of motion, thereby providing the tools
required for describing and mitigating surface-induced decoherence in a variety
of experiments with charged objects.
Related papers
- Deterministic Quantum Field Trajectories and Macroscopic Effects [0.0]
The root to macroscopic quantum effects is revealed based on the quasiparticle model of collective excitations in an arbitrary degenerate electron gas.
It is remarked that any quantum many body system composed of large number of interacting particles acts as a dual arm device controlling the microscopic single particle effects with one hand and the macroscopic phenomena with the other.
arXiv Detail & Related papers (2023-11-16T06:23:09Z) - Coulomb interaction-driven entanglement of electrons on helium [0.0]
We theoretically investigate the generation of emphmotional entanglement between two electrons via their unscreened Coulomb interaction.
We compute the motional energy spectra of the electrons, as well as their entanglement, by diagonalizing the model Hamiltonian with respect to a single-particle Hartree product basis.
In particular, the theoretical tools developed here can be used for fine tuning and optimization of control parameters in future experiments with electrons trapped above the surface of superfluid helium or solid neon.
arXiv Detail & Related papers (2023-10-07T21:40:20Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Nonperturbative Waveguide Quantum Electrodynamics [0.0]
We study in and out of equilibrium properties of waveguide quantum electrodynamics.
We uncover several surprising features ranging from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective mass.
Results are relevant to experiments in superconducting qubits interacting with microwave resonators or coupled atoms to photonic crystals.
arXiv Detail & Related papers (2021-05-18T21:15:57Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - Possible implications for particle physics by quantum measurement [1.2691047660244335]
An appealing phenomenon in quantum measurements, termed as quantum Zeno effect, can be observed in particular subspaces selected by measurement Hamiltonian.
We develop an alternative insight into the properties of fundamental particles, but not intend to challenge the Standard Model (SM)
In a unified and simple manner, our effective model allows to merge the origin of neutrino's small mass and oscillations, the hierarchy pattern for masses of electric charged fermions, the color confinement, and the discretization of quantum numbers.
arXiv Detail & Related papers (2021-02-20T08:15:55Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Quantum electromechanics with levitated nanoparticles [0.0]
In contrast to atomic systems with discrete transitions, nanoparticles exhibit a practically continuous absorption spectrum.
We propose a pulsed scheme for the generation and read-out of motional quantum superpositions and entanglement between several levitated nanoparticles.
arXiv Detail & Related papers (2020-05-28T13:52:42Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.