A Setwise Approach for Effective and Highly Efficient Zero-shot Ranking with Large Language Models
- URL: http://arxiv.org/abs/2310.09497v2
- Date: Thu, 30 May 2024 10:03:27 GMT
- Title: A Setwise Approach for Effective and Highly Efficient Zero-shot Ranking with Large Language Models
- Authors: Shengyao Zhuang, Honglei Zhuang, Bevan Koopman, Guido Zuccon,
- Abstract summary: We propose a novel zero-shot document ranking approach based on Large Language Models (LLMs): the Setwise prompting approach.
Our approach complements existing prompting approaches for LLM-based zero-shot ranking: Pointwise, Pairwise, and Listwise.
- Score: 35.17291316942284
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a novel zero-shot document ranking approach based on Large Language Models (LLMs): the Setwise prompting approach. Our approach complements existing prompting approaches for LLM-based zero-shot ranking: Pointwise, Pairwise, and Listwise. Through the first-of-its-kind comparative evaluation within a consistent experimental framework and considering factors like model size, token consumption, latency, among others, we show that existing approaches are inherently characterised by trade-offs between effectiveness and efficiency. We find that while Pointwise approaches score high on efficiency, they suffer from poor effectiveness. Conversely, Pairwise approaches demonstrate superior effectiveness but incur high computational overhead. Our Setwise approach, instead, reduces the number of LLM inferences and the amount of prompt token consumption during the ranking procedure, compared to previous methods. This significantly improves the efficiency of LLM-based zero-shot ranking, while also retaining high zero-shot ranking effectiveness. We make our code and results publicly available at \url{https://github.com/ielab/llm-rankers}.
Related papers
- Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
This paper reveals a unified game-theoretic connection between iterative BOND and self-play alignment.
We establish a novel framework, WIN rate Dominance (WIND), with a series of efficient algorithms for regularized win rate dominance optimization.
arXiv Detail & Related papers (2024-10-28T04:47:39Z) - Efficient Pointwise-Pairwise Learning-to-Rank for News Recommendation [6.979979613916754]
News recommendation is a challenging task that involves personalization based on the interaction history and preferences of each user.
Recent works have leveraged the power of pretrained language models (PLMs) to directly rank news items by using inference approaches that predominately fall into three categories: pointwise, pairwise, and listwise learning-to-rank.
We propose a novel framework for PLM-based news recommendation that integrates both pointwise relevance prediction and pairwise comparisons in a scalable manner.
arXiv Detail & Related papers (2024-09-26T10:27:19Z) - On Speeding Up Language Model Evaluation [48.51924035873411]
Development of prompt-based methods with Large Language Models (LLMs) requires making numerous decisions.
We propose a novel method to address this challenge.
We show that it can identify the top-performing method using only 5-15% of the typically needed resources.
arXiv Detail & Related papers (2024-07-08T17:48:42Z) - Instruction Distillation Makes Large Language Models Efficient Zero-shot
Rankers [56.12593882838412]
We introduce a novel instruction distillation method to rank documents.
We first rank documents using the effective pairwise approach with complex instructions, and then distill the teacher predictions to the pointwise approach with simpler instructions.
Our approach surpasses the performance of existing supervised methods like monoT5 and is on par with the state-of-the-art zero-shot methods.
arXiv Detail & Related papers (2023-11-02T19:16:21Z) - LlamaRec: Two-Stage Recommendation using Large Language Models for
Ranking [10.671747198171136]
We propose a two-stage framework using large language models for ranking-based recommendation (LlamaRec)
In particular, we use small-scale sequential recommenders to retrieve candidates based on the user interaction history.
LlamaRec consistently achieves datasets superior performance in both recommendation performance and efficiency.
arXiv Detail & Related papers (2023-10-25T06:23:48Z) - Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting [65.00288634420812]
Pairwise Ranking Prompting (PRP) is a technique to significantly reduce the burden on Large Language Models (LLMs)
Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs.
arXiv Detail & Related papers (2023-06-30T11:32:25Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.