Microscopic derivation of transition-state theory for complex quantum systems
- URL: http://arxiv.org/abs/2310.09537v3
- Date: Mon, 1 Apr 2024 03:38:15 GMT
- Title: Microscopic derivation of transition-state theory for complex quantum systems
- Authors: K. Hagino, G. F. Bertsch,
- Abstract summary: We derive the basic formula for transition-state theory based on a generic Hamiltonian.
It is also found that the transition probability is independent of the decay properties of the states in the second reservoir over a wide range of decay widths.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The decay of quantum complex systems through a potential barrier is often described with transition-state theory, also known as RRKM theory in chemistry. Here we derive the basic formula for transition-state theory based on a generic Hamiltonian as might be constructed in a configuration-interaction basis. Two reservoirs of random Hamiltonians from Gaussian orthogonal ensembles are coupled to intermediate states representing the transition states at a barrier. Under the condition that the decay of the reservoirs to open channels is large, an analytic formula for reaction rates is derived. The transition states act as independent Breit-Wigner resonances which contribute additively to the total transition probability, as is well known for electronic conductance through resonant tunneling states. It is also found that the transition probability is independent of the decay properties of the states in the second reservoir over a wide range of decay widths.
Related papers
- Dynamics of a Nonequilibrium Discontinuous Quantum Phase Transition in a
Spinor Bose-Einstein Condensate [0.0]
We show that critical scaling behavior in a first-order quantum phase transition can be understood from generic properties.
We predict the onset of the decay of the metastable state on short times scales and the number of resulting phase-separated ferromagnetic domains at longer times.
arXiv Detail & Related papers (2023-12-27T12:39:23Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Second Response Theory: A Theoretical Formalism for the Propagation of
Quantum Superpositions [0.0]
We expand a previously developed size-extensive formalism within coupled cluster theory, called second response theory, so it propagates quantum systems.
Our theory shows strong consistency with numerically exact results for the determination of quantum mechanical observables, probabilities, and coherences.
arXiv Detail & Related papers (2023-06-13T17:33:22Z) - Decay and revival dynamics of a quantum state embedded in regularly
spaced band of states [0.0]
The dynamics of a single quantum state embedded in one or several (quasi-)continua is one of the most studied phenomena in quantum mechanics.
In this work we investigate its discrete analogue and consider short and long time dynamics based on numerical and analytical solutions of the Schr"odinger equation.
arXiv Detail & Related papers (2023-06-05T08:30:47Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Mechanism for particle fractionalization and universal edge physics in
quantum Hall fluids [58.720142291102135]
We advance a second-quantization framework that helps reveal an exact fusion mechanism for particle fractionalization in FQH fluids.
We also uncover the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level (LLL)
arXiv Detail & Related papers (2021-10-12T18:00:00Z) - Transition-state dynamics in complex quantum systems [0.0]
We study the reaction dynamics in complex quantum systems in which the complete mixing of states is hindered by an internal barrier.
The validity of the transition-state theory is questionable when there is no identifiable coordinate associated with the barrier.
We find that the transition-state formula can be derived from the model under some easily justifiable approximations.
arXiv Detail & Related papers (2021-05-25T16:51:30Z) - Interplay between transport and quantum coherences in free fermionic
systems [58.720142291102135]
We study the quench dynamics in free fermionic systems.
In particular, we identify a function, that we dub emphtransition map, which takes the value of the stationary current as input and gives the value of correlation as output.
arXiv Detail & Related papers (2021-03-24T17:47:53Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Transition Probabilities for Flavor Eigenstates of Non-Hermitian
Hamiltonians in the PT-Broken Phase [0.0]
We investigate the transition probabilities for the "flavor" eigenstates in the two-level quantum system.
We show that the diverging behavior of the transition probabilities is actually applicable to the gauge-transformed neutral-meson states.
We also present a brief review on the situation at the so-called exceptional point, where both the eigenvalues and eigenvectors of the Hamiltonian coalesce.
arXiv Detail & Related papers (2020-02-13T14:04:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.