Second Response Theory: A Theoretical Formalism for the Propagation of
Quantum Superpositions
- URL: http://arxiv.org/abs/2306.07924v4
- Date: Wed, 6 Sep 2023 20:06:34 GMT
- Title: Second Response Theory: A Theoretical Formalism for the Propagation of
Quantum Superpositions
- Authors: Mart\'in A. Mosquera
- Abstract summary: We expand a previously developed size-extensive formalism within coupled cluster theory, called second response theory, so it propagates quantum systems.
Our theory shows strong consistency with numerically exact results for the determination of quantum mechanical observables, probabilities, and coherences.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The propagation of general electronic quantum states provides information of
the interaction of molecular systems with external driving fields. These can
also offer understandings regarding non-adiabatic quantum phenomena. Well
established methods focus mainly on propagating a quantum system that is
initially described exclusively by the ground state wavefunction. In this work,
we expand a previously developed size-extensive formalism within coupled
cluster theory, called second response theory, so it propagates quantum systems
that are initially described by a general linear combination of different
states, which can include the ground state, and show how with a special set of
time-dependent cluster operators such propagations are performed. Our theory
shows strong consistency with numerically exact results for the determination
of quantum mechanical observables, probabilities, and coherences. We discuss
unperturbed non-stationary states within second response theory and their
ability to predict matrix elements that agree with those found in linear and
quadratic response theories. This work also discusses an approximate
regularized methodology to treat systems with potential instabilities in their
ground-state cluster amplitudes, and compares such approximations with respect
to reference results from standard unitary theory.
Related papers
- The composition rule for quantum systems is not the only possible one [0.0]
We argue that the composition postulate deserves to be experimentally scrutinised independently of the other features of quantum theory.
We formulate a family of operational theories that are solely distinguished from quantum theory by their system-composition rule.
arXiv Detail & Related papers (2024-11-24T19:31:13Z) - Bridging classical and quantum approaches in optical polarimetry: Predicting polarization-entangled photon behavior in scattering environments [36.89950360824034]
We explore quantum-based optical polarimetry as a potential diagnostic tool for biological tissues.
We develop a theoretical and experimental framework to understand polarization-entangled photon behavior in scattering media.
arXiv Detail & Related papers (2024-11-09T10:17:47Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - Realizing a 1D topological gauge theory in an optically dressed BEC [0.0]
Topological gauge theories describe the low-energy properties of strongly correlated quantum systems through effective weakly interacting models.
In traditional solid-state platforms such gauge theories are only convenient theoretical constructions.
We report the quantum simulation of a topological gauge theory by realizing a one-dimensional reduction of the Chern-Simons theory in a Bose-Einstein condensate.
arXiv Detail & Related papers (2022-04-11T19:38:44Z) - Testing quantum theory by generalizing noncontextuality [0.0]
We prove that only Jordan-algebraic state spaces are exactly embeddable into quantum theory.
We propose an experimental test of quantum theory by probing single physical systems.
arXiv Detail & Related papers (2021-12-17T19:00:24Z) - Fermionic duality: General symmetry of open systems with strong
dissipation and memory [0.0]
We present a nontrivial fermionic duality relation between the evolution of states (Schr"odinger) and of observables (Heisenberg)
We show how this highly nonintuitive relation can be understood and exploited in analytical calculations within all canonical approaches to quantum dynamics.
arXiv Detail & Related papers (2021-04-22T17:37:42Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - The quasi-particle picture and its breakdown after local quenches:
mutual information, negativity, and reflected entropy [0.0]
We study the dynamics of (R'enyi) mutual information, logarithmic negativity, and (R'enyi) reflected entropy after exciting the ground state by a local operator.
We are able to conjecture a close-knit structure between the three quantities that emerges in states excited above the vacuum.
arXiv Detail & Related papers (2020-08-25T20:47:05Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.