Empirical study of pretrained multilingual language models for zero-shot cross-lingual knowledge transfer in generation
- URL: http://arxiv.org/abs/2310.09917v3
- Date: Mon, 22 Apr 2024 17:10:45 GMT
- Title: Empirical study of pretrained multilingual language models for zero-shot cross-lingual knowledge transfer in generation
- Authors: Nadezhda Chirkova, Sheng Liang, Vassilina Nikoulina,
- Abstract summary: Cross-lingual knowledge transfer enables the multilingual pretrained language model (mPLM) to make predictions in other languages.
Previous works notice a frequent problem of generation in a wrong language and propose approaches to address it, usually using mT5 as a backbone model.
In this work, we test alternative mPLMs, such as mBART and NLLB-200, considering full finetuning and parameter-efficient finetuning with adapters.
- Score: 22.962667039293976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot cross-lingual knowledge transfer enables the multilingual pretrained language model (mPLM), finetuned on a task in one language, make predictions for this task in other languages. While being broadly studied for natural language understanding tasks, the described setting is understudied for generation. Previous works notice a frequent problem of generation in a wrong language and propose approaches to address it, usually using mT5 as a backbone model. In this work, we test alternative mPLMs, such as mBART and NLLB-200, considering full finetuning and parameter-efficient finetuning with adapters. We find that mBART with adapters performs similarly to mT5 of the same size, and NLLB-200 can be competitive in some cases. We also underline the importance of tuning learning rate used for finetuning, which helps to alleviate the problem of generation in the wrong language.
Related papers
- Key ingredients for effective zero-shot cross-lingual knowledge transfer in generative tasks [22.93790760274486]
Zero-shot cross-lingual knowledge transfer enables a multilingual pretrained language model, finetuned on a task in one language, make predictions for this task in other languages.
Previous works notice a frequent problem of generation in a wrong language and propose approaches to address it, usually using mT5 as a backbone model.
In this work we compare various approaches proposed from the literature in unified settings, also including alternative backbone models, namely mBART and NLLB-200.
arXiv Detail & Related papers (2024-02-19T16:43:57Z) - Crosslingual Generalization through Multitask Finetuning [80.8822603322471]
Multitask prompted finetuning (MTF) has been shown to help large language models generalize to new tasks in a zero-shot setting.
We apply MTF to the pretrained multilingual BLOOM and mT5 model families to produce finetuned variants called BLOOMZ and mT0.
We find finetuning large multilingual language models on English tasks with English prompts allows for task generalization to non-English languages.
arXiv Detail & Related papers (2022-11-03T13:19:32Z) - Language-Family Adapters for Low-Resource Multilingual Neural Machine
Translation [129.99918589405675]
Large multilingual models trained with self-supervision achieve state-of-the-art results in a wide range of natural language processing tasks.
Multilingual fine-tuning improves performance on low-resource languages but requires modifying the entire model and can be prohibitively expensive.
We propose training language-family adapters on top of mBART-50 to facilitate cross-lingual transfer.
arXiv Detail & Related papers (2022-09-30T05:02:42Z) - High-resource Language-specific Training for Multilingual Neural Machine
Translation [109.31892935605192]
We propose the multilingual translation model with the high-resource language-specific training (HLT-MT) to alleviate the negative interference.
Specifically, we first train the multilingual model only with the high-resource pairs and select the language-specific modules at the top of the decoder.
HLT-MT is further trained on all available corpora to transfer knowledge from high-resource languages to low-resource languages.
arXiv Detail & Related papers (2022-07-11T14:33:13Z) - Parameter-Efficient Neural Reranking for Cross-Lingual and Multilingual
Retrieval [66.69799641522133]
State-of-the-art neural (re)rankers are notoriously data hungry.
Current approaches typically transfer rankers trained on English data to other languages and cross-lingual setups by means of multilingual encoders.
We show that two parameter-efficient approaches to cross-lingual transfer, namely Sparse Fine-Tuning Masks (SFTMs) and Adapters, allow for a more lightweight and more effective zero-shot transfer.
arXiv Detail & Related papers (2022-04-05T15:44:27Z) - ZmBART: An Unsupervised Cross-lingual Transfer Framework for Language
Generation [4.874780144224057]
Cross-lingual transfer for natural language generation is relatively understudied.
We consider four NLG tasks (text summarization, question generation, news headline generation, and distractor generation) and three syntactically diverse languages.
We propose an unsupervised cross-lingual language generation framework (called ZmBART) that does not use any parallel or pseudo-parallel/back-translated data.
arXiv Detail & Related papers (2021-06-03T05:08:01Z) - Multilingual Translation with Extensible Multilingual Pretraining and
Finetuning [77.33262578776291]
Previous work has demonstrated that machine translation systems can be created by finetuning on bitext.
We show that multilingual translation models can be created through multilingual finetuning.
We demonstrate that pretrained models can be extended to incorporate additional languages without loss of performance.
arXiv Detail & Related papers (2020-08-02T05:36:55Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
Massively multilingual models for neural machine translation (NMT) are theoretically attractive, but often underperform bilingual models and deliver poor zero-shot translations.
We argue that multilingual NMT requires stronger modeling capacity to support language pairs with varying typological characteristics.
We propose random online backtranslation to enforce the translation of unseen training language pairs.
arXiv Detail & Related papers (2020-04-24T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.