UvA-MT's Participation in the WMT23 General Translation Shared Task
- URL: http://arxiv.org/abs/2310.09946v1
- Date: Sun, 15 Oct 2023 20:49:31 GMT
- Title: UvA-MT's Participation in the WMT23 General Translation Shared Task
- Authors: Di Wu, Shaomu Tan, David Stap, Ali Araabi, Christof Monz
- Abstract summary: This paper describes the UvA-MT's submission to the WMT 2023 shared task on general machine translation.
We show that by using one model to handle bidirectional tasks, it is possible to achieve comparable results with that of traditional bilingual translation for both directions.
- Score: 7.4336950563281174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes the UvA-MT's submission to the WMT 2023 shared task on
general machine translation. We participate in the constrained track in two
directions: English <-> Hebrew. In this competition, we show that by using one
model to handle bidirectional tasks, as a minimal setting of Multilingual
Machine Translation (MMT), it is possible to achieve comparable results with
that of traditional bilingual translation for both directions. By including
effective strategies, like back-translation, re-parameterized embedding table,
and task-oriented fine-tuning, we obtained competitive final results in the
automatic evaluation for both English -> Hebrew and Hebrew -> English
directions.
Related papers
- HW-TSC's Submission to the CCMT 2024 Machine Translation Tasks [12.841065384808733]
We participate in the bilingual machine translation task and multi-domain machine translation task.
For these two translation tasks, we use training strategies such as regularized dropout, bidirectional training, data diversification, forward translation, back translation, alternated training, curriculum learning, and transductive ensemble learning.
arXiv Detail & Related papers (2024-09-23T09:20:19Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks.
We propose the TasTe framework, which stands for translating through self-reflection.
The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods.
arXiv Detail & Related papers (2024-06-12T17:21:21Z) - Findings of the WMT 2022 Shared Task on Translation Suggestion [63.457874930232926]
We report the result of the first edition of the WMT shared task on Translation Suggestion.
The task aims to provide alternatives for specific words or phrases given the entire documents generated by machine translation (MT)
It consists two sub-tasks, namely, the naive translation suggestion and translation suggestion with hints.
arXiv Detail & Related papers (2022-11-30T03:48:36Z) - CUNI Submission in WMT22 General Task [1.9356648007558004]
We present the CUNI-Bergamot submission for the WMT22 General translation task.
Compared to the previous work, we measure performance in terms of COMET score and named entities translation accuracy.
arXiv Detail & Related papers (2022-11-29T13:06:09Z) - TSMind: Alibaba and Soochow University's Submission to the WMT22
Translation Suggestion Task [16.986003476984965]
This paper describes the joint submission of Alibaba and Soochow University, TSMind, to the WMT 2022 Shared Task on Translation Suggestion.
Basically, we utilize the model paradigm fine-tuning on the downstream tasks based on large-scale pre-trained models.
Considering the task's condition of limited use of training data, we follow the data augmentation strategies proposed by WeTS to boost our TS model performance.
arXiv Detail & Related papers (2022-11-16T15:43:31Z) - The Effect of Normalization for Bi-directional Amharic-English Neural
Machine Translation [53.907805815477126]
This paper presents the first relatively large-scale Amharic-English parallel sentence dataset.
We build bi-directional Amharic-English translation models by fine-tuning the existing Facebook M2M100 pre-trained model.
The results show that the normalization of Amharic homophone characters increases the performance of Amharic-English machine translation in both directions.
arXiv Detail & Related papers (2022-10-27T07:18:53Z) - Multilingual Machine Translation Systems from Microsoft for WMT21 Shared
Task [95.06453182273027]
This report describes Microsoft's machine translation systems for the WMT21 shared task on large-scale multilingual machine translation.
Our model submissions to the shared task were with DeltaLMnotefooturlhttps://aka.ms/deltalm, a generic pre-trained multilingual-decoder model.
Our final submissions ranked first on three tracks in terms of the automatic evaluation metric.
arXiv Detail & Related papers (2021-11-03T09:16:17Z) - The JHU-Microsoft Submission for WMT21 Quality Estimation Shared Task [14.629380601429956]
This paper presents the JHU-Microsoft joint submission for WMT 2021 quality estimation shared task.
We only participate in Task 2 (post-editing effort estimation) of the shared task, focusing on the target-side word-level quality estimation.
We demonstrate the competitiveness of our system compared to the widely adopted OpenKiwi-XLM baseline.
arXiv Detail & Related papers (2021-09-17T19:13:31Z) - Unsupervised Bitext Mining and Translation via Self-trained Contextual
Embeddings [51.47607125262885]
We describe an unsupervised method to create pseudo-parallel corpora for machine translation (MT) from unaligned text.
We use multilingual BERT to create source and target sentence embeddings for nearest-neighbor search and adapt the model via self-training.
We validate our technique by extracting parallel sentence pairs on the BUCC 2017 bitext mining task and observe up to a 24.5 point increase (absolute) in F1 scores over previous unsupervised methods.
arXiv Detail & Related papers (2020-10-15T14:04:03Z) - SJTU-NICT's Supervised and Unsupervised Neural Machine Translation
Systems for the WMT20 News Translation Task [111.91077204077817]
We participated in four translation directions of three language pairs: English-Chinese, English-Polish, and German-Upper Sorbian.
Based on different conditions of language pairs, we have experimented with diverse neural machine translation (NMT) techniques.
In our submissions, the primary systems won the first place on English to Chinese, Polish to English, and German to Upper Sorbian translation directions.
arXiv Detail & Related papers (2020-10-11T00:40:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.