論文の概要: Black-box Targeted Adversarial Attack on Segment Anything (SAM)
- arxiv url: http://arxiv.org/abs/2310.10010v1
- Date: Mon, 16 Oct 2023 02:09:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-17 17:01:06.510379
- Title: Black-box Targeted Adversarial Attack on Segment Anything (SAM)
- Title(参考訳): Black-box Targeted Adversarial Attack on Segment Anything (SAM)
- Authors: Sheng Zheng, Chaoning Zhang
- Abstract要約: 本研究は,Segment Anything Model (SAM) におけるターゲット対敵攻撃 (TAA) の実現を目的とする。
具体的には、特定のプロンプトの下では、敵の例の予測マスクを所定のターゲット画像のマスクに類似させることが目的である。
本稿では, ランダムな自然画像に対する逆画像の特徴優位性を高めることで, クロスモデル転送可能性を高める新たな正規化損失を提案する。
- 参考スコア(独自算出の注目度): 28.68709383471814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep recognition models are widely vulnerable to adversarial examples, which
change the model output by adding quasi-imperceptible perturbation to the image
input. Recently, Segment Anything Model (SAM) has emerged to become a popular
foundation model in computer vision due to its impressive generalization to
unseen data and tasks. Realizing flexible attacks on SAM is beneficial for
understanding the robustness of SAM in the adversarial context. To this end,
this work aims to achieve a targeted adversarial attack (TAA) on SAM.
Specifically, under a certain prompt, the goal is to make the predicted mask of
an adversarial example resemble that of a given target image. The task of TAA
on SAM has been realized in a recent arXiv work in the white-box setup by
assuming access to prompt and model, which is thus less practical. To address
the issue of prompt dependence, we propose a simple yet effective approach by
only attacking the image encoder. Moreover, we propose a novel regularization
loss to enhance the cross-model transferability by increasing the feature
dominance of adversarial images over random natural images. Extensive
experiments verify the effectiveness of our proposed simple techniques to
conduct a successful black-box TAA on SAM.
- Abstract(参考訳): 深層認識モデルは、画像入力に準可視摂動を加えることによってモデル出力を変化させる敵の例に広く脆弱である。
近年,Segment Anything Model (SAM) がコンピュータビジョンの基盤モデルとして注目されている。
SAMに対する柔軟な攻撃を実現することは、SAMの強靭性を理解する上で有益である。
本研究の目的は,SAM上での敵攻撃(TAA)を実現することである。
具体的には、特定のプロンプトの下では、敵の例の予測マスクを所定のターゲット画像のマスクに類似させることが目的である。
SAM上でのTAAのタスクは、プロンプトとモデルへのアクセスを仮定することで、最近のarXivのホワイトボックス設定で実現されている。
プロンプト依存の問題に対処するために,画像エンコーダを攻撃するだけで,簡単かつ効果的なアプローチを提案する。
さらに, ランダム自然画像に対する逆画像の特徴的優位を増大させることにより, クロスモデル転送性を高める新しい正規化損失を提案する。
SAM上でのブラックボックスTAAを成功させるために,提案手法の有効性を検証した。
関連論文リスト
- Promptable Anomaly Segmentation with SAM Through Self-Perception Tuning [63.55145330447408]
Segment Anything Model (SAM) は、その顕著な一般化能力により、異常セグメンテーションタスクにおいて大きな進歩を遂げている。
SAMを直接適用する既存のメソッドは、しばしばドメインシフトの問題を見落としている。
本稿では, SAMの異常セグメンテーションに対する知覚能力を高めることを目的とした, 自己パーセプティノンチューニング(SPT)手法を提案する。
論文 参考訳(メタデータ) (2024-11-26T08:33:25Z) - Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
本稿では,セグメント・アプライス・モデル(SAM)から微調整した様々な下流モデルに対する敵攻撃の可能性について検討する。
未知のデータセットを微調整したモデルに対する敵攻撃の有効性を高めるために,ユニバーサルメタ初期化(UMI)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-26T15:04:04Z) - DarkSAM: Fooling Segment Anything Model to Segment Nothing [25.67725506581337]
Segment Anything Model (SAM) は、最近、データやタスクの見当たらない一般化で注目を集めている。
セマンティックデカップリングに基づく空間攻撃とテクスチャ歪みに基づく周波数攻撃を含む,SAMに対する最初のプロンプトフリーユニバーサルアタックフレームワークであるDarkSAMを提案する。
SAMの4つのデータセットとその2つの変種モデルに対する実験結果は、DarkSAMの強力な攻撃能力と転送可能性を示している。
論文 参考訳(メタデータ) (2024-09-26T14:20:14Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - ASAM: Boosting Segment Anything Model with Adversarial Tuning [9.566046692165884]
本稿では, 対角的チューニングにより基礎モデルの性能を増幅する新しい手法であるASAMを紹介する。
我々は,自然言語処理における実装の成功に触発された,自然対逆例の可能性を生かした。
本手法は, 対向例のフォトリアリズムを維持し, 元のマスクアノテーションとの整合性を確保する。
論文 参考訳(メタデータ) (2024-05-01T00:13:05Z) - Improving the Generalization of Segmentation Foundation Model under Distribution Shift via Weakly Supervised Adaptation [43.759808066264334]
本稿では,アンカー正規化と低ランク微調整を併用した弱教師付き自己学習アーキテクチャを提案する。
本研究では, 自然浄化・破損画像, 医用画像, カモフラージュ画像, ロボット画像など, 5種類の下流セグメンテーションタスクの有効性を検証した。
論文 参考訳(メタデータ) (2023-12-06T13:59:22Z) - SAM Meets UAP: Attacking Segment Anything Model With Universal Adversarial Perturbation [61.732503554088524]
画像認識不能なユニバーサル適応摂動(UAP)を用いてSAM(Segment Anything Model)を攻撃できるかどうかを検討する。
自己教師付きコントラスト学習(CL)に基づくUAP生成手法を実現する新しい摂動中心フレームワークを提案する。
CLを用いたUAP生成手法の有効性を定量的および定性的に検証した。
論文 参考訳(メタデータ) (2023-10-19T02:49:24Z) - Attack-SAM: Towards Attacking Segment Anything Model With Adversarial
Examples [68.5719552703438]
Segment Anything Model (SAM) は、様々なダウンストリームタスクにおける印象的なパフォーマンスのために、最近大きな注目を集めている。
深い視覚モデルは敵の例に弱いと広く認識されており、それはモデルを騙して知覚不能な摂動で間違った予測をする。
この研究は、SAMの攻撃方法に関する総合的な調査を敵対的な例で実施した最初のものである。
論文 参考訳(メタデータ) (2023-05-01T15:08:17Z) - CARBEN: Composite Adversarial Robustness Benchmark [70.05004034081377]
本稿では,複合対向攻撃 (CAA) が画像に与える影響を実証する。
異なるモデルのリアルタイム推論を提供し、攻撃レベルのパラメータの設定を容易にする。
CAAに対する敵対的堅牢性を評価するためのリーダーボードも導入されている。
論文 参考訳(メタデータ) (2022-07-16T01:08:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。