From Continuous Dynamics to Graph Neural Networks: Neural Diffusion and
Beyond
- URL: http://arxiv.org/abs/2310.10121v2
- Date: Sun, 29 Oct 2023 21:31:53 GMT
- Title: From Continuous Dynamics to Graph Neural Networks: Neural Diffusion and
Beyond
- Authors: Andi Han, Dai Shi, Lequan Lin, Junbin Gao
- Abstract summary: Graph neural networks (GNNs) have demonstrated significant promise in modelling data and have been widely applied in various fields of interest.
We provide the first systematic and comprehensive review of studies that leverage the continuous perspective of GNNs.
- Score: 32.290102818872526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have demonstrated significant promise in
modelling relational data and have been widely applied in various fields of
interest. The key mechanism behind GNNs is the so-called message passing where
information is being iteratively aggregated to central nodes from their
neighbourhood. Such a scheme has been found to be intrinsically linked to a
physical process known as heat diffusion, where the propagation of GNNs
naturally corresponds to the evolution of heat density. Analogizing the process
of message passing to the heat dynamics allows to fundamentally understand the
power and pitfalls of GNNs and consequently informs better model design.
Recently, there emerges a plethora of works that proposes GNNs inspired from
the continuous dynamics formulation, in an attempt to mitigate the known
limitations of GNNs, such as oversmoothing and oversquashing. In this survey,
we provide the first systematic and comprehensive review of studies that
leverage the continuous perspective of GNNs. To this end, we introduce
foundational ingredients for adapting continuous dynamics to GNNs, along with a
general framework for the design of graph neural dynamics. We then review and
categorize existing works based on their driven mechanisms and underlying
dynamics. We also summarize how the limitations of classic GNNs can be
addressed under the continuous framework. We conclude by identifying multiple
open research directions.
Related papers
- Spiking Graph Neural Network on Riemannian Manifolds [51.15400848660023]
Graph neural networks (GNNs) have become the dominant solution for learning on graphs.
Existing spiking GNNs consider graphs in Euclidean space, ignoring the structural geometry.
We present a Manifold-valued Spiking GNN (MSG)
MSG achieves superior performance to previous spiking GNNs and energy efficiency to conventional GNNs.
arXiv Detail & Related papers (2024-10-23T15:09:02Z) - Spatiotemporal Learning on Cell-embedded Graphs [6.8090864965073274]
We introduce a learnable cell attribution to the node-edge message passing process, which better captures the spatial dependency of regional features.
Experiments on various PDE systems and one real-world dataset demonstrate that CeGNN achieves superior performance compared with other baseline models.
arXiv Detail & Related papers (2024-09-26T16:22:08Z) - A survey of dynamic graph neural networks [26.162035361191805]
Graph neural networks (GNNs) have emerged as a powerful tool for effectively mining and learning from graph-structured data.
This paper provides a comprehensive review of the fundamental concepts, key techniques, and state-of-the-art dynamic GNN models.
arXiv Detail & Related papers (2024-04-28T15:07:48Z) - Continuous Spiking Graph Neural Networks [43.28609498855841]
Continuous graph neural networks (CGNNs) have garnered significant attention due to their ability to generalize existing discrete graph neural networks (GNNs)
We introduce the high-order structure of COS-GNN, which utilizes the second-order ODE for spiking representation and continuous propagation.
We provide the theoretical proof that COS-GNN effectively mitigates the issues of exploding and vanishing gradients, enabling us to capture long-range dependencies between nodes.
arXiv Detail & Related papers (2024-04-02T12:36:40Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs.
We investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs)
Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation.
arXiv Detail & Related papers (2023-09-12T09:18:12Z) - Re-Think and Re-Design Graph Neural Networks in Spaces of Continuous
Graph Diffusion Functionals [7.6435511285856865]
Graph neural networks (GNNs) are widely used in domains like social networks and biological systems.
locality assumption of GNNs hampers their ability to capture long-range dependencies and global patterns in graphs.
We propose a new inductive bias based on variational analysis, drawing inspiration from the Brachchronistoe problem.
arXiv Detail & Related papers (2023-07-01T04:44:43Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Explaining Dynamic Graph Neural Networks via Relevance Back-propagation [8.035521056416242]
Graph Neural Networks (GNNs) have shown remarkable effectiveness in capturing abundant information in graph-structured data.
The black-box nature of GNNs hinders users from understanding and trusting the models, thus leading to difficulties in their applications.
We propose DGExplainer to provide reliable explanation on dynamic GNNs.
arXiv Detail & Related papers (2022-07-22T16:20:34Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks.
We propose a novel scheme dedicated to overcoming this problem and hence strengthen continual learning in graph neural networks (GNNs)
At the heart of our approach is a generic module, termed as topology-aware weight preserving(TWP)
arXiv Detail & Related papers (2020-12-10T22:30:25Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.