A survey of dynamic graph neural networks
- URL: http://arxiv.org/abs/2404.18211v1
- Date: Sun, 28 Apr 2024 15:07:48 GMT
- Title: A survey of dynamic graph neural networks
- Authors: Yanping Zheng, Lu Yi, Zhewei Wei,
- Abstract summary: Graph neural networks (GNNs) have emerged as a powerful tool for effectively mining and learning from graph-structured data.
This paper provides a comprehensive review of the fundamental concepts, key techniques, and state-of-the-art dynamic GNN models.
- Score: 26.162035361191805
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural networks (GNNs) have emerged as a powerful tool for effectively mining and learning from graph-structured data, with applications spanning numerous domains. However, most research focuses on static graphs, neglecting the dynamic nature of real-world networks where topologies and attributes evolve over time. By integrating sequence modeling modules into traditional GNN architectures, dynamic GNNs aim to bridge this gap, capturing the inherent temporal dependencies of dynamic graphs for a more authentic depiction of complex networks. This paper provides a comprehensive review of the fundamental concepts, key techniques, and state-of-the-art dynamic GNN models. We present the mainstream dynamic GNN models in detail and categorize models based on how temporal information is incorporated. We also discuss large-scale dynamic GNNs and pre-training techniques. Although dynamic GNNs have shown superior performance, challenges remain in scalability, handling heterogeneous information, and lack of diverse graph datasets. The paper also discusses possible future directions, such as adaptive and memory-enhanced models, inductive learning, and theoretical analysis.
Related papers
- Information propagation dynamics in Deep Graph Networks [1.8130068086063336]
Deep Graph Networks (DGNs) have emerged as a family of deep learning models that can process and learn structured information.
This thesis investigates the dynamics of information propagation within DGNs for static and dynamic graphs, focusing on their design as dynamical systems.
arXiv Detail & Related papers (2024-10-14T12:55:51Z) - DTFormer: A Transformer-Based Method for Discrete-Time Dynamic Graph Representation Learning [38.53424185696828]
The representation learning of Discrete-Time Dynamic Graphs (DTDGs) has been extensively applied to model the dynamics of temporally changing entities and their evolving connections.
This paper introduces a novel representation learning method DTFormer for DTDGs, pivoting from the traditional GNN+RNN framework to a Transformer-based architecture.
arXiv Detail & Related papers (2024-07-26T05:46:23Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - DyExplainer: Explainable Dynamic Graph Neural Networks [37.16783248212211]
We present DyExplainer, a novel approach to explaining dynamic Graph Neural Networks (GNNs) on the fly.
DyExplainer trains a dynamic GNN backbone to extract representations of the graph at each snapshot.
We also augment our approach with contrastive learning techniques to provide priori-guided regularization.
arXiv Detail & Related papers (2023-10-25T05:26:33Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Explaining Dynamic Graph Neural Networks via Relevance Back-propagation [8.035521056416242]
Graph Neural Networks (GNNs) have shown remarkable effectiveness in capturing abundant information in graph-structured data.
The black-box nature of GNNs hinders users from understanding and trusting the models, thus leading to difficulties in their applications.
We propose DGExplainer to provide reliable explanation on dynamic GNNs.
arXiv Detail & Related papers (2022-07-22T16:20:34Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
Biological spiking neurons with intrinsic dynamics underlie the powerful representation and learning capabilities of the brain.
Despite recent tremendous progress in spiking neural networks (SNNs) for handling Euclidean-space tasks, it still remains challenging to exploit SNNs in processing non-Euclidean-space data.
Here we present a general spike-based modeling framework that enables the direct training of SNNs for graph learning.
arXiv Detail & Related papers (2021-06-30T11:20:16Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.