Learning visual-based deformable object rearrangement with local graph
neural networks
- URL: http://arxiv.org/abs/2310.10307v1
- Date: Mon, 16 Oct 2023 11:42:54 GMT
- Title: Learning visual-based deformable object rearrangement with local graph
neural networks
- Authors: Yuhong Deng, Xueqian Wang, Lipeng chen
- Abstract summary: We propose a novel representation strategy that can efficiently model the deformable object states with a set of keypoints and their interactions.
We also propose a light local GNN learning to jointly model the deformable rearrangement dynamics and infer the optimal manipulation actions.
Our method reaches much higher success rates on a variety of deformable rearrangement tasks (96.3% on average) than state-of-the-art method in simulation experiments.
- Score: 4.333220038316982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Goal-conditioned rearrangement of deformable objects (e.g. straightening a
rope and folding a cloth) is one of the most common deformable manipulation
tasks, where the robot needs to rearrange a deformable object into a prescribed
goal configuration with only visual observations. These tasks are typically
confronted with two main challenges: the high dimensionality of deformable
configuration space and the underlying complexity, nonlinearity and uncertainty
inherent in deformable dynamics. To address these challenges, we propose a
novel representation strategy that can efficiently model the deformable object
states with a set of keypoints and their interactions. We further propose
local-graph neural network (GNN), a light local GNN learning to jointly model
the deformable rearrangement dynamics and infer the optimal manipulation
actions (e.g. pick and place) by constructing and updating two dynamic graphs.
Both simulated and real experiments have been conducted to demonstrate that the
proposed dynamic graph representation shows superior expressiveness in modeling
deformable rearrangement dynamics. Our method reaches much higher success rates
on a variety of deformable rearrangement tasks (96.3% on average) than
state-of-the-art method in simulation experiments. Besides, our method is much
more lighter and has a 60% shorter inference time than state-of-the-art
methods. We also demonstrate that our method performs well in the multi-task
learning scenario and can be transferred to real-world applications with an
average success rate of 95% by solely fine tuning a keypoint detector.
Related papers
- Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control [2.058941610795796]
This paper introduces a streamlined method for learning low-dimensional, physics-based models.
We validate our approach through simulations with various planar soft manipulators.
Thanks to the capability of the method of generating physically compatible models, the learned models can be straightforwardly combined with model-based control policies.
arXiv Detail & Related papers (2024-10-31T18:37:22Z) - MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
We present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes.
By simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes.
We show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics.
arXiv Detail & Related papers (2024-10-04T18:00:07Z) - Graphical Object-Centric Actor-Critic [55.2480439325792]
We propose a novel object-centric reinforcement learning algorithm combining actor-critic and model-based approaches.
We use a transformer encoder to extract object representations and graph neural networks to approximate the dynamics of an environment.
Our algorithm performs better in a visually complex 3D robotic environment and a 2D environment with compositional structure than the state-of-the-art model-free actor-critic algorithm.
arXiv Detail & Related papers (2023-10-26T06:05:12Z) - Dynamic-Resolution Model Learning for Object Pile Manipulation [33.05246884209322]
We investigate how to learn dynamic and adaptive representations at different levels of abstraction to achieve the optimal trade-off between efficiency and effectiveness.
Specifically, we construct dynamic-resolution particle representations of the environment and learn a unified dynamics model using graph neural networks (GNNs)
We show that our method achieves significantly better performance than state-of-the-art fixed-resolution baselines at the gathering, sorting, and redistribution of granular object piles.
arXiv Detail & Related papers (2023-06-29T05:51:44Z) - Deep Reinforcement Learning Based on Local GNN for Goal-conditioned
Deformable Object Rearranging [1.807492010338763]
Object rearranging is one of the most common deformable manipulation tasks, where the robot needs to rearrange a deformable object into a goal configuration.
Previous studies focus on designing an expert system for each specific task by model-based or data-driven approaches.
We design a local GNN (Graph Neural Network) based learning method, which utilizes two representation graphs to encode keypoints detected from images.
Our framework is effective in multiple 1-D (rope, rope ring) and 2-D (cloth) rearranging tasks in simulation and can be easily transferred to a real robot by fine-tuning a keypoint detector
arXiv Detail & Related papers (2023-02-21T05:21:26Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
We propose to combine neural implicit representations for appearance modeling with neural ordinary differential equations (ODEs) for modelling physical phenomena.
Our proposed model combines several unique advantages: (i) Contrary to existing approaches that require large training datasets, we are able to identify physical parameters from only a single video.
The use of neural implicit representations enables the processing of high-resolution videos and the synthesis of photo-realistic images.
arXiv Detail & Related papers (2022-04-29T11:55:35Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object
Manipulation [135.10594078615952]
We introduce ACID, an action-conditional visual dynamics model for volumetric deformable objects.
A benchmark contains over 17,000 action trajectories with six types of plush toys and 78 variants.
Our model achieves the best performance in geometry, correspondence, and dynamics predictions.
arXiv Detail & Related papers (2022-03-14T04:56:55Z) - Planning from Images with Deep Latent Gaussian Process Dynamics [2.924868086534434]
Planning is a powerful approach to control problems with known environment dynamics.
In unknown environments the agent needs to learn a model of the system dynamics to make planning applicable.
We propose to learn a deep latent Gaussian process dynamics (DLGPD) model that learns low-dimensional system dynamics from environment interactions with visual observations.
arXiv Detail & Related papers (2020-05-07T21:29:45Z) - Learning Predictive Representations for Deformable Objects Using
Contrastive Estimation [83.16948429592621]
We propose a new learning framework that jointly optimize both the visual representation model and the dynamics model.
We show substantial improvements over standard model-based learning techniques across our rope and cloth manipulation suite.
arXiv Detail & Related papers (2020-03-11T17:55:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.