論文の概要: Adaptive Particle Swarm Optimization for through-foliage target
detection with drone swarms
- arxiv url: http://arxiv.org/abs/2310.10320v1
- Date: Mon, 16 Oct 2023 11:58:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-17 14:46:09.862830
- Title: Adaptive Particle Swarm Optimization for through-foliage target
detection with drone swarms
- Title(参考訳): ドローン群を用いた葉間目標検出のための適応粒子群最適化
- Authors: Julia P\"oschl
- Abstract要約: この研究は、航空機の観測者による植生を隠蔽する標的を自律的に検出する努力に貢献する。
空中光学分割(AOS)ドローン群に対するPSO(Particle Swarm Optimization)戦略に関する以前の研究を調査・強化している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work contributes to efforts on autonomously detecting a
vegetation-occluded target by airborne observers. It investigates and enhances
previous work on a Particle Swarm Optimization (PSO) strategy for Airborne
Optical Sectioning (AOS) drone swarms. First, it identifies two issues with
that method and proposes to resolve them by a leader stabilization for its
scattering and projection-based line positions for its default scanning
pattern. Second, it connects this method to other PSO variants and presents a
new adaptive PSO strategy for AOS drone swarms that draws on the ideas of
Adaptive PSO (APSO).
- Abstract(参考訳): この研究は、空中観測者による植生を捕捉した目標を自律的に検出する取り組みに寄与する。
空中光学分割(AOS)ドローン群に対するPSO(Particle Swarm Optimization)戦略に関する以前の研究を調査・強化している。
まず,この手法の2つの問題を特定し,デフォルトの走査パターンに対する散乱線と投影線の位置のリーダ安定化による解決を提案する。
第2に、この手法を他のPSO亜種に接続し、適応型PSO(APSO)の考え方に基づくAOSドローン群に対する新しい適応型PSO戦略を示す。
関連論文リスト
- UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Scale Optimization Using Evolutionary Reinforcement Learning for Object
Detection on Drone Imagery [17.26524675722299]
本稿では, 粗い物体検出フレームワークに組み込まれた進化的強化学習エージェントを提案し, 画像中の物体のより効率的な検出のために, スケールを最適化する。
スケール最適化の指針として, 局所化精度, 予測ラベルの精度, 近傍のパッチ間のスケール一貫性のセットを設計する。
論文 参考訳(メタデータ) (2023-12-23T10:49:55Z) - Backpropagation Path Search On Adversarial Transferability [35.71353415348786]
転送ベースの攻撃者は代理モデルに対する敵の例を作成し、犠牲者モデルに転送する。
構造ベースの攻撃者は、サロゲートモデルにオーバーフィットしないようにバックプロパゲーションパスを調整する。
既存の構造ベースの攻撃者は、CNNの畳み込みモジュールを探索できず、バックプロパゲーショングラフを変更する。
論文 参考訳(メタデータ) (2023-08-15T08:21:20Z) - Thompson sampling for improved exploration in GFlowNets [75.89693358516944]
生成フローネットワーク(Generative Flow Networks, GFlowNets)は、合成対象物上の分布からのサンプリングを、学習可能なアクションポリシーを用いたシーケンシャルな意思決定問題として扱う、アモータイズされた変分推論アルゴリズムである。
2つの領域において、TS-GFNは、過去の研究で使われたオフ・ポリティクス・サーベイ・ストラテジーよりも、探索を改善し、目標分布への収束を早くすることを示す。
論文 参考訳(メタデータ) (2023-06-30T14:19:44Z) - Threatening Patch Attacks on Object Detection in Optical Remote Sensing
Images [55.09446477517365]
自然画像における物体検出における高度なパッチアタック(PA)は、ディープニューラルネットワークに基づく手法における大きな安全性の脆弱性を指摘した。
我々は,TPAと呼ばれる視覚的品質の低下を伴わない,より危険度の高いPAを提案する。
我々の知る限りでは、これがO-RSIにおけるオブジェクト検出におけるPAの研究の最初の試みであり、この研究が読者にこのトピックの研究に興味を持たせることを願っている。
論文 参考訳(メタデータ) (2023-02-13T02:35:49Z) - Synthetic Aperture Sensing for Occlusion Removal with Drone Swarms [4.640835690336653]
我々は、密集した森林地帯において、密集した目標を検出し、追跡する上で、自律型ドローン群がいかに効率的かを実証する。
閉塞密度や目標視斜視といった局所的な観測条件の探索と最適化は、従来のブラインドサンプリング戦略よりもはるかに高速で信頼性の高い結果を提供する。
論文 参考訳(メタデータ) (2022-12-30T13:19:15Z) - Aligning Silhouette Topology for Self-Adaptive 3D Human Pose Recovery [70.66865453410958]
アーティキュレーション中心の2D/3Dポーズ監視は、既存の多くの人間のポーズ推定技術においてコアトレーニング目標を形成する。
本稿では,ソース学習モデルベース回帰器を適応させるために,シルエット監視のみに依存する新しいフレームワークを提案する。
我々は、トポロジカル・スケルトン表現を生シルエットから切り離すために、一連の畳み込みに優しい空間変換を開発する。
論文 参考訳(メタデータ) (2022-04-04T06:58:15Z) - Safety-enhanced UAV Path Planning with Spherical Vector-based Particle
Swarm Optimization [5.076419064097734]
本稿では,無人航空機(UAV)の経路計画問題に対処するため,球面ベクトルベース粒子群最適化 (SPSO) という新しいアルゴリズムを提案する。
コスト関数が最初に定式化され、経路計画がUAVの実用的で安全な運用に必要な要件と制約を組み込んだ最適化問題に変換される。
SPSOは、UAVの構成空間を効率的に探索することでコスト関数を最小化する最適経路を見つけるために使用される。
論文 参考訳(メタデータ) (2021-04-13T06:45:11Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
本稿では,他の飛行ドローンからドローンを検知する問題に対処する。
ソースとターゲットドローンのエロティックな動き、小型、任意の形状、大きな強度、および閉塞は、この問題を非常に困難にします。
これに対処するため,地域提案に基づく手法ではなく,2段階のセグメンテーションに基づく手法を提案する。
論文 参考訳(メタデータ) (2021-03-31T17:43:31Z) - A Vision Based Deep Reinforcement Learning Algorithm for UAV Obstacle
Avoidance [1.2693545159861856]
UAV障害物回避のための探索を改善するための2つの技術を紹介します。
ひとつは収束に基づくアプローチで、探索されていない動作と時間しきい値を反復して探索と搾取のバランスをとる。
2つ目は、ガウス混合分布を用いて予測された次の状態と比較し、次のアクションを選択するためのガイダンスベースアプローチである。
論文 参考訳(メタデータ) (2021-03-11T01:15:26Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
目標を他のエージェントと整合させる人間の能力の下にあるのは、他人の意図を予測し、自分たちの計画を積極的に更新する能力である。
分散型マルチエージェントレンデブーのためのモデルに基づく強化学習手法である階層型予測計画(HPP)を提案する。
論文 参考訳(メタデータ) (2020-03-15T19:49:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。