論文の概要: A Scalable Decentralized Reinforcement Learning Framework for UAV Target Localization Using Recurrent PPO
- arxiv url: http://arxiv.org/abs/2412.06231v1
- Date: Mon, 09 Dec 2024 06:08:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:52:50.720821
- Title: A Scalable Decentralized Reinforcement Learning Framework for UAV Target Localization Using Recurrent PPO
- Title(参考訳): リカレントPPOを用いたUAVターゲットローカライゼーションのためのスケーラブル分散強化学習フレームワーク
- Authors: Leon Fernando, Billy Pik Lik Lau, Chau Yuen, U-Xuan Tan,
- Abstract要約: 劣化環境における目標位置推定のための繰り返しPPOモデルを構築した。
ターゲット同定のための単一ドローンの手法を最初に開発し,その後に分散化された2流体モデルを開発した。
単気筒モデルでは93%の精度を達成し、2気筒モデルでは86%の精度を達成した。
- 参考スコア(独自算出の注目度): 13.637231534128938
- License:
- Abstract: The rapid advancements in unmanned aerial vehicles (UAVs) have unlocked numerous applications, including environmental monitoring, disaster response, and agricultural surveying. Enhancing the collective behavior of multiple decentralized UAVs can significantly improve these applications through more efficient and coordinated operations. In this study, we explore a Recurrent PPO model for target localization in perceptually degraded environments like places without GNSS/GPS signals. We first developed a single-drone approach for target identification, followed by a decentralized two-drone model. Our approach can utilize two types of sensors on the UAVs, a detection sensor and a target signal sensor. The single-drone model achieved an accuracy of 93%, while the two-drone model achieved an accuracy of 86%, with the latter requiring fewer average steps to locate the target. This demonstrates the potential of our method in UAV swarms, offering efficient and effective localization of radiant targets in complex environmental conditions.
- Abstract(参考訳): 無人航空機(UAV)の急速な進歩は、環境モニタリング、災害対応、農業調査など、多くの応用を開放した。
複数の分散UAVの集合的挙動の強化は、より効率的で協調的な操作により、これらのアプリケーションを大幅に改善することができる。
本研究では, GNSS/GPS信号のない場所のような知覚的に劣化した環境において, 目標位置定位のためのリカレントPPOモデルについて検討した。
ターゲット同定のための単一ドローンの手法を最初に開発し,その後に分散化された2流体モデルを開発した。
提案手法では,UAVの2種類のセンサ,検出センサ,目標信号センサを利用することができる。
単気筒モデルでは93%の精度を達成し、2気筒モデルでは86%の精度を達成した。
これにより, 複雑な環境条件下での放射能目標の効率的かつ効果的な位置決めを可能にするUAVスワムにおける本手法の可能性を示す。
関連論文リスト
- Robust Low-Cost Drone Detection and Classification in Low SNR Environments [0.9087641068861043]
ドローンを検知し、分類する能力について、様々な畳み込みニューラルネットワーク(CNN)を評価した。
本稿では,標準コンピュータ,ソフトウェア定義無線(SDR),アンテナを用いた低コストドローン検知システムについて紹介する。
論文 参考訳(メタデータ) (2024-06-26T12:50:55Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Anti-Jamming Path Planning Using GCN for Multi-UAV [0.0]
UAVスワーミングの有効性は、ジャミング技術によって著しく損なわれる可能性がある。
UAV群集が集団知能を利用してジャム領域を予測する手法が提案されている。
マルチエージェント制御アルゴリズムを使用して、UAVスワムを分散し、ジャミングを回避し、ターゲットに到達すると再グループ化する。
論文 参考訳(メタデータ) (2024-03-13T07:28:05Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
航空中継機としての無人航空機(UAV)は、インターネットモノ(IoT)ネットワークの補助として事実上魅力的である。
本研究では,UAV基地局と端末端末装置間のセキュアな通信を支援するために,UAVを活用することを目的とする。
論文 参考訳(メタデータ) (2023-10-03T11:47:01Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Reinforcement Learning for Agile Active Target Sensing with a UAV [10.070339628481445]
本稿では,情報トラジェクトリを計画するための深層強化学習手法を開発する。
ターゲット状態に対する現在の信念を活用し、高忠実度分類のための不正確なセンサーモデルを含む。
提案手法の特異な特徴は,真の目標分布から様々な量の偏差が生じることにある。
論文 参考訳(メタデータ) (2022-12-16T01:01:17Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
本稿では,無人航空機(MUAV)搭載のIoT(Internet of Things)ネットワークについて検討する。
本稿では、インテリジェント反射面(IRS)を備えた充電可能な補助UAV(AUAV)を用いて、MUAVからの通信信号を強化することを提案する。
提案モデルでは,IoTネットワークの蓄積スループットを最大化するために,これらのエネルギー制限されたUAVの最適協調戦略について検討する。
論文 参考訳(メタデータ) (2021-12-20T15:45:28Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - A Vision Based Deep Reinforcement Learning Algorithm for UAV Obstacle
Avoidance [1.2693545159861856]
UAV障害物回避のための探索を改善するための2つの技術を紹介します。
ひとつは収束に基づくアプローチで、探索されていない動作と時間しきい値を反復して探索と搾取のバランスをとる。
2つ目は、ガウス混合分布を用いて予測された次の状態と比較し、次のアクションを選択するためのガイダンスベースアプローチである。
論文 参考訳(メタデータ) (2021-03-11T01:15:26Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
本研究では,無人航空機(UAV)に低高度レーダーを装備し,未知の環境下での飛行における共同検出・マッピング・ナビゲーション問題について検討する。
目的は、マッピング精度を最大化する目的で軌道を最適化することであり、目標検出の観点からは、測定が不十分な領域を避けることである。
論文 参考訳(メタデータ) (2020-05-05T20:39:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。