論文の概要: On the Transferability of Learning Models for Semantic Segmentation for
Remote Sensing Data
- arxiv url: http://arxiv.org/abs/2310.10490v1
- Date: Mon, 16 Oct 2023 15:13:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-17 13:37:42.180236
- Title: On the Transferability of Learning Models for Semantic Segmentation for
Remote Sensing Data
- Title(参考訳): リモートセンシングデータの意味セグメンテーションのための学習モデルの伝達性について
- Authors: Rongjun Qin, Guixiang Zhang, Yang Tang
- Abstract要約: 近年の深層学習に基づく手法は、リモートセンシング(RS)セマンティックセグメンテーション/分類タスクにおいて従来の学習方法より優れている。
しかし、ソースドメインでトレーニングされたモデルがターゲットドメインに容易に適用できる程度に、その転送可能性に関する包括的な分析は存在しない。
本稿では,従来のディープラーニングモデル(DL)とドメイン適応手法(DA)の有効性について検討する。
- 参考スコア(独自算出の注目度): 12.500746892824338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent deep learning-based methods outperform traditional learning methods on
remote sensing (RS) semantic segmentation/classification tasks. However, they
require large training datasets and are generally known for lack of
transferability due to the highly disparate RS image content across different
geographical regions. Yet, there is no comprehensive analysis of their
transferability, i.e., to which extent a model trained on a source domain can
be readily applicable to a target domain. Therefore, in this paper, we aim to
investigate the raw transferability of traditional and deep learning (DL)
models, as well as the effectiveness of domain adaptation (DA) approaches in
enhancing the transferability of the DL models (adapted transferability). By
utilizing four highly diverse RS datasets, we train six models with and without
three DA approaches to analyze their transferability between these datasets
quantitatively. Furthermore, we developed a straightforward method to quantify
the transferability of a model using the spectral indices as a medium and have
demonstrated its effectiveness in evaluating the model transferability at the
target domain when the labels are unavailable. Our experiments yield several
generally important yet not well-reported observations regarding the raw and
adapted transferability. Moreover, our proposed label-free transferability
assessment method is validated to be better than posterior model confidence.
The findings can guide the future development of generalized RS learning
models. The trained models are released under this link:
https://github.com/GDAOSU/Transferability-Remote-Sensing
- Abstract(参考訳): 近年の深層学習手法は、リモートセンシング(RS)セマンティックセグメンテーション/分類タスクにおいて従来の学習方法より優れている。
しかしながら、大きなトレーニングデータセットが必要であり、地理的に異なる領域にまたがる非常に異なるrs画像コンテンツのため、転送性の欠如が一般的に知られている。
しかし、ソースドメインでトレーニングされたモデルがターゲットドメインに容易に適用できる程度に、その転送可能性に関する包括的な分析は存在しない。
そこで本研究では,従来型および深層学習モデル(DL)の生の転写可能性,およびドメイン適応(DA)アプローチの有効性について検討する。
4つの高度に多様なrsデータセットを利用することで、3つのdaアプローチで6つのモデルをトレーニングし、それらのデータセット間の転送可能性を定量的に分析する。
さらに,スペクトル指標を媒質としたモデルの転送可能性の定量化手法を開発し,ラベルが利用できない場合に対象領域におけるモデル転送性を評価する上での有効性を示した。
我々の実験は、生および適応された転写性について、一般的に重要で、報告されていないいくつかの観察結果をもたらす。
また,提案手法は後頭部モデルの信頼度よりも良好であることを確認した。
この知見は、一般化RS学習モデルの今後の発展を導くことができる。
トレーニングされたモデルは以下のリンクでリリースされる。
関連論文リスト
- Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
ドメイン適応(DA)は、ソースドメインから関連するターゲットドメインへの知識伝達を容易にする。
本稿では、ソースデータフリーなアクティブドメイン適応(SFADA)という実用的なDAパラダイムについて検討する。
本稿では,学習者学習(LFTL)というSFADAの新たなパラダイムを紹介し,学習した学習知識を事前学習モデルから活用し,余分なオーバーヘッドを伴わずにモデルを積極的に反復する。
論文 参考訳(メタデータ) (2024-07-26T17:51:58Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Towards Estimating Transferability using Hard Subsets [25.86053764521497]
HASTEは、ターゲットデータのより厳しいサブセットのみを用いて、ソースモデルの特定のターゲットタスクへの転送可能性を推定する新しい戦略である。
HASTEは既存の転送可能性測定値と組み合わせて信頼性を向上させることができることを示す。
複数のソースモデルアーキテクチャ、ターゲットデータセット、トランスファー学習タスクにまたがる実験結果から、HASTEの修正されたメトリクスは、一貫して、あるいは、アートトランスファービリティーメトリクスの状態と同等であることが示された。
論文 参考訳(メタデータ) (2023-01-17T14:50:18Z) - Estimation and inference for transfer learning with high-dimensional
quantile regression [3.4510296013600374]
本研究では,高次元量子レグレッションモデルの枠組みにおける伝達学習手法を提案する。
我々は、微妙に選択された転送可能なソースドメインに基づいて、転送学習推定器の誤差境界を確立する。
データ分割手法を採用することにより、負の転送を回避できる転送可能性検出手法を提案する。
論文 参考訳(メタデータ) (2022-11-26T14:40:19Z) - Auto-Transfer: Learning to Route Transferrable Representations [77.30427535329571]
本稿では,適切なターゲット表現にソース表現をルートする方法を自動学習する,新しい対向型マルチアームバンディット手法を提案する。
最先端の知識伝達手法と比較すると,5%以上の精度向上が期待できる。
論文 参考訳(メタデータ) (2022-02-02T13:09:27Z) - Transfer learning to improve streamflow forecasts in data sparse regions [0.0]
本研究では,データスパース領域におけるストリームフロー予測の一般化性能向上のために,微調整およびパラメータ転送による伝達学習(TL)の方法論について検討する。
本稿では,Long Short-Term Memory(LSTM)という形式で,十分に大きなソースドメインデータセットに適合する標準のリカレントニューラルネットワークを提案する。
本稿では,モデルの空間的および時間的成分を分離し,モデルを一般化する訓練を行うことにより,水文学応用のための伝達学習手法を実装する手法を提案する。
論文 参考訳(メタデータ) (2021-12-06T14:52:53Z) - How Well Do Sparse Imagenet Models Transfer? [75.98123173154605]
転送学習は、大規模な"上流"データセットで事前訓練されたモデルが、"下流"データセットで良い結果を得るために適応される古典的なパラダイムである。
本研究では、ImageNetデータセットでトレーニングされた畳み込みニューラルネットワーク(CNN)のコンテキストにおいて、この現象を詳細に調査する。
スパースモデルでは, 高空間であっても, 高密度モデルの転送性能にマッチしたり, 性能に優れることを示す。
論文 参考訳(メタデータ) (2021-11-26T11:58:51Z) - A Variational Bayesian Approach to Learning Latent Variables for
Acoustic Knowledge Transfer [55.20627066525205]
本稿では,ディープニューラルネットワーク(DNN)モデルにおける潜伏変数の分布を学習するための変分ベイズ(VB)アプローチを提案する。
我々の提案するVBアプローチは,ターゲットデバイスにおいて良好な改善が得られ,しかも,13の最先端知識伝達アルゴリズムを一貫して上回っている。
論文 参考訳(メタデータ) (2021-10-16T15:54:01Z) - A Systematic Evaluation of Domain Adaptation in Facial Expression
Recognition [0.0]
本稿では,表情認識における領域適応の体系的評価について述べる。
我々は、最先端のトランスファー学習技術と、6つの一般的な顔表情データセットを使用する。
その結果,移動学習の精度は高くなく,目的のデータセットと慣用的に異なることがわかった。
論文 参考訳(メタデータ) (2021-06-29T14:41:19Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
本稿では,TRED(Target-Awareness Representation Disentanglement)の概念を取り入れた新しいトランスファー学習アルゴリズムを提案する。
TREDは、対象のタスクに関する関連する知識を元のソースモデルから切り離し、ターゲットモデルを微調整する際、レギュレータとして使用する。
各種実世界のデータセットを用いた実験により,本手法は標準微調整を平均2%以上安定的に改善することが示された。
論文 参考訳(メタデータ) (2020-10-16T17:45:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。