論文の概要: Towards Scenario-based Safety Validation for Autonomous Trains with Deep
Generative Models
- arxiv url: http://arxiv.org/abs/2310.10635v1
- Date: Mon, 16 Oct 2023 17:55:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-17 12:30:38.755356
- Title: Towards Scenario-based Safety Validation for Autonomous Trains with Deep
Generative Models
- Title(参考訳): 深部生成モデルを用いた自律列車のシナリオベース安全検証に向けて
- Authors: Thomas Decker, Ananta R. Bhattarai, and Michael Lebacher
- Abstract要約: シナリオベース検証のための深層生成モデルを用いたデータシミュレーションの有用性に関する実践経験を報告する。
本研究では,鉄道シーンをより深い生成モデルで意味論的に編集し,限られた量の試験データをより代表的なものにする能力を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern AI techniques open up ever-increasing possibilities for autonomous
vehicles, but how to appropriately verify the reliability of such systems
remains unclear. A common approach is to conduct safety validation based on a
predefined Operational Design Domain (ODD) describing specific conditions under
which a system under test is required to operate properly. However, collecting
sufficient realistic test cases to ensure comprehensive ODD coverage is
challenging. In this paper, we report our practical experiences regarding the
utility of data simulation with deep generative models for scenario-based ODD
validation. We consider the specific use case of a camera-based rail-scene
segmentation system designed to support autonomous train operation. We
demonstrate the capabilities of semantically editing railway scenes with deep
generative models to make a limited amount of test data more representative. We
also show how our approach helps to analyze the degree to which a system
complies with typical ODD requirements. Specifically, we focus on evaluating
proper operation under different lighting and weather conditions as well as
while transitioning between them.
- Abstract(参考訳): 現代のAI技術は、自動運転車のさらなる可能性を開くが、そのようなシステムの信頼性を適切に検証する方法はまだ不明だ。
一般的なアプローチは、事前定義された運用設計ドメイン(odd)に基づいて安全性検証を行うことで、テスト中のシステムが適切に動作する必要がある特定の条件を記述する。
しかし、包括的なODDカバレッジを確保するのに十分な現実的なテストケースの収集は困難である。
本稿では,シナリオベースODD検証のための深層生成モデルを用いたデータシミュレーションの有用性に関する実践経験を報告する。
本稿では,自律列車運行を支援するために,カメラを用いたレールシーンセグメンテーションシステムの利用事例を検討する。
本研究では,鉄道シーンを深層生成モデルで意味的に編集し,限られた量のテストデータをより代表的にするための機能を示す。
また、我々のアプローチは、システムが典型的なODD要件に準拠する程度を分析するのにどのように役立つかを示す。
具体的には,異なる照明条件と気象条件下での適切な操作の評価と,それら間の遷移に焦点をあてる。
関連論文リスト
- Generating Out-Of-Distribution Scenarios Using Language Models [58.47597351184034]
大規模言語モデル(LLM)は自動運転において有望であることを示している。
本稿では,多様なOF-Distribution(OOD)駆動シナリオを生成するためのフレームワークを提案する。
我々は、広範囲なシミュレーションを通じてフレームワークを評価し、新しい"OOD-ness"メトリクスを導入する。
論文 参考訳(メタデータ) (2024-11-25T16:38:17Z) - AdvDiffuser: Generating Adversarial Safety-Critical Driving Scenarios via Guided Diffusion [6.909801263560482]
AdvDiffuserは、ガイド付き拡散を通じて安全クリティカルな運転シナリオを生成するための敵対的なフレームワークである。
本稿では,AdvDiffuserが最小限のウォームアップエピソードデータを持つ様々なテストシステムに適用可能であることを示す。
論文 参考訳(メタデータ) (2024-10-11T02:03:21Z) - SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation [55.87169702896249]
Unsupervised Domain Adaptation (DA) は、ラベル付きソースドメインでトレーニングされたモデルを適用して、ラベルなしのターゲットドメインでデータ分散シフトをうまく実行する。
本稿では,DA手法の評価と,再重み付け,マッピング,部分空間アライメントなど,既存の浅層アルゴリズムの公平な評価を行うフレームワークを提案する。
本ベンチマークでは,現実的な検証の重要性を強調し,現実的なアプリケーションに対する実践的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-07-16T12:52:29Z) - GOOSE: Goal-Conditioned Reinforcement Learning for Safety-Critical Scenario Generation [0.14999444543328289]
ゴール条件付きシナリオ生成(Goal-conditioned Scenario Generation、GOOSE)は、ゴール条件付き強化学習(RL)アプローチで、安全クリティカルなシナリオを自動的に生成する。
安全クリティカルな事象につながるシナリオを生成する上でのGOOSEの有効性を実証する。
論文 参考訳(メタデータ) (2024-06-06T08:59:08Z) - Hard Cases Detection in Motion Prediction by Vision-Language Foundation Models [16.452638202694246]
本研究は、自動運転におけるハードケースの検出におけるビジョン・ランゲージ・ファンデーション・モデル(VLM)の可能性を探るものである。
設計したプロンプトで逐次画像フレームを供給し,課題のあるエージェントやシナリオを効果的に識別する,実現可能なパイプラインを提案する。
NuScenesデータセット上で、パイプラインを最先端の手法に組み込むことの有効性と可能性を示す。
論文 参考訳(メタデータ) (2024-05-31T16:35:41Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - Discovering Decision Manifolds to Assure Trusted Autonomous Systems [0.0]
本稿では,システムが提示できる正誤応答の範囲を最適化した探索手法を提案する。
この多様体は、従来のテストやモンテカルロシミュレーションよりもシステムの信頼性をより詳細に理解する。
この概念実証では,本手法を自動運転車のループ内ソフトウェア評価に適用する。
論文 参考訳(メタデータ) (2024-02-12T16:55:58Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - Robust Monocular Depth Estimation under Challenging Conditions [81.57697198031975]
最先端のモノクル深度推定手法は、難解な照明や気象条件下では信頼性が低い。
我々はmd4allでこれらの安全クリティカルな問題に取り組む: 単純で効果的なソリューションで、悪条件と理想条件の両方で確実に機能する。
論文 参考訳(メタデータ) (2023-08-18T17:59:01Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Efficient statistical validation with edge cases to evaluate Highly
Automated Vehicles [6.198523595657983]
自動運転車の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているようだ。
既存の標準は、検証が要求をカバーするテストケースのセットだけを必要とする決定論的プロセスに焦点を当てています。
本稿では, 自動生成テストケースを最悪のシナリオに偏り付け, システムの挙動の統計的特性を計算するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-03-04T04:35:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。