論文の概要: GOOSE: Goal-Conditioned Reinforcement Learning for Safety-Critical Scenario Generation
- arxiv url: http://arxiv.org/abs/2406.03870v1
- Date: Thu, 6 Jun 2024 08:59:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 15:39:42.181804
- Title: GOOSE: Goal-Conditioned Reinforcement Learning for Safety-Critical Scenario Generation
- Title(参考訳): GOOSE:安全批判シナリオ生成のためのゴールコンディション強化学習
- Authors: Joshua Ransiek, Johannes Plaum, Jacob Langner, Eric Sax,
- Abstract要約: ゴール条件付きシナリオ生成(Goal-conditioned Scenario Generation、GOOSE)は、ゴール条件付き強化学習(RL)アプローチで、安全クリティカルなシナリオを自動的に生成する。
安全クリティカルな事象につながるシナリオを生成する上でのGOOSEの有効性を実証する。
- 参考スコア(独自算出の注目度): 0.14999444543328289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scenario-based testing is considered state-of-the-art for verifying and validating Advanced Driver Assistance Systems (ADASs) and Automated Driving Systems (ADSs). However, the practical application of scenario-based testing requires an efficient method to generate or collect the scenarios that are needed for the safety assessment. In this paper, we propose Goal-conditioned Scenario Generation (GOOSE), a goal-conditioned reinforcement learning (RL) approach that automatically generates safety-critical scenarios to challenge ADASs or ADSs. In order to simultaneously set up and optimize scenarios, we propose to control vehicle trajectories at the scenario level. Each step in the RL framework corresponds to a scenario simulation. We use Non-Uniform Rational B-Splines (NURBS) for trajectory modeling. To guide the goal-conditioned agent, we formulate test-specific, constraint-based goals inspired by the OpenScenario Domain Specific Language(DSL). Through experiments conducted on multiple pre-crash scenarios derived from UN Regulation No. 157 for Active Lane Keeping Systems (ALKS), we demonstrate the effectiveness of GOOSE in generating scenarios that lead to safety-critical events.
- Abstract(参考訳): シナリオベースのテストは、Advanced Driver Assistance Systems(ADAS)とAutomated Driving Systems(ADS)の検証と検証のための最先端技術と考えられている。
しかし,シナリオベーステストの実践的な適用には,安全評価に必要なシナリオの生成や収集に効率的な方法が必要である。
本稿では,ADAS や ADS に挑戦する安全クリティカルシナリオを自動的に生成する目標条件強化学習 (RL) アプローチである Goal-conditioned Scenario Generation (GOOSE) を提案する。
シナリオを同時に設定し,最適化するために,シナリオレベルで車両軌道を制御することを提案する。
RLフレームワークの各ステップはシナリオシミュレーションに対応する。
軌跡モデリングには, NURBS (Non-Uniform Rational B-Splines) を用いる。
目標条件付きエージェントをガイドするために、OpenScenario Domain Specific Language(DSL)に触発されたテスト固有の制約ベースの目標を定式化します。
アクティブレーン維持システム(ALKS)のための国連規制第157号から派生した複数の事前クラッシュシナリオで実施した実験を通じて、安全クリティカルな事象につながるシナリオを生成する上でのGOOSEの有効性を実証する。
関連論文リスト
- Generating Out-Of-Distribution Scenarios Using Language Models [58.47597351184034]
大規模言語モデル(LLM)は自動運転において有望であることを示している。
本稿では,多様なOF-Distribution(OOD)駆動シナリオを生成するためのフレームワークを提案する。
我々は、広範囲なシミュレーションを通じてフレームワークを評価し、新しい"OOD-ness"メトリクスを導入する。
論文 参考訳(メタデータ) (2024-11-25T16:38:17Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Automatic Generation of Scenarios for System-level Simulation-based
Verification of Autonomous Driving Systems [0.0]
本稿では,AIコンポーネントを用いた自律システムのシステムレベルのシミュレーションに基づくV&Vフレームワークについて述べる。
このフレームワークは、システムの振る舞いを象徴的に記述する抽象モデルであるシステムのシミュレーションモデルに基づいている。
シナリオの自動生成をガイドするために、さまざまなカバレッジ基準を定義することができます。
論文 参考訳(メタデータ) (2023-11-16T11:03:13Z) - Is Scenario Generation Ready for SOTIF? A Systematic Literature Review [3.1491385041570146]
我々は,SOTIF規格の要件に従ってシナリオを生成する手法を特定するために,体系的文献レビューを実施している。
実世界のどの詳細が生成されたシナリオでカバーされているのか、テスト中のシステムに特定のシナリオがあるのか、あるいはジェネリックなのか、未知のシナリオと有害なシナリオのセットを最小限に抑えるために設計されているのか、について検討する。
論文 参考訳(メタデータ) (2023-08-04T11:59:21Z) - Clustering-based Criticality Analysis for Testing of Automated Driving
Systems [0.18416014644193066]
本稿では,1つの論理シナリオから具体的なシナリオをクラスタリングすることで設定したシナリオを削減するという目標に焦点をあてる。
クラスタリング技術を利用することで、冗長で非関心なシナリオを識別および排除することが可能になり、典型的なシナリオセットとなる。
論文 参考訳(メタデータ) (2023-06-22T08:36:20Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVEは、特定のプランナーが衝突のような望ましくない振る舞いを発生させるような、困難なシナリオを自動的に生成する手法である。
シナリオの妥当性を維持するために、キーとなるアイデアは、グラフベースの条件付きVAEという形で、学習した交通運動モデルを活用することである。
その後の最適化は、シナリオの"解決"を見つけるために使用され、与えられたプランナーを改善するのに有効である。
論文 参考訳(メタデータ) (2021-12-09T18:03:27Z) - Addressing the IEEE AV Test Challenge with Scenic and VerifAI [10.221093591444731]
本稿では,IEEE AVテストチャレンジのシミュレーションにおいて,自律走行車(AV)のテストに対する我々の公式なアプローチを要約する。
我々は,知的サイバー物理システムのための形式駆動型シミュレーションに関するこれまでの研究を生かした,系統的なテストフレームワークを実証する。
論文 参考訳(メタデータ) (2021-08-20T04:51:27Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
エージェント間の相互作用と将来のシーン構造を予測するIPC(Instance-Aware Predictive Control)アプローチを提案する。
我々は,ego中心の視点でエージェント間のインタラクションを推定するために,新しいマルチインスタンスイベント予測モジュールを採用する。
シーンレベルとインスタンスレベルの両方の予測状態をより有効活用するために、一連のアクションサンプリング戦略を設計します。
論文 参考訳(メタデータ) (2021-01-14T22:21:25Z) - Learning to Collide: An Adaptive Safety-Critical Scenarios Generating
Method [20.280573307366627]
本稿では,タスクアルゴリズム評価のための安全クリティカルなシナリオを作成するための生成フレームワークを提案する。
提案手法は,グリッド探索や人的設計手法よりも安全クリティカルなシナリオを効率的に生成できることを実証する。
論文 参考訳(メタデータ) (2020-03-02T21:26:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。