Interactive Task Planning with Language Models
- URL: http://arxiv.org/abs/2310.10645v1
- Date: Mon, 16 Oct 2023 17:59:12 GMT
- Title: Interactive Task Planning with Language Models
- Authors: Boyi Li and Philipp Wu and Pieter Abbeel and Jitendra Malik
- Abstract summary: An interactive robot framework accomplishes long-horizon task planning and can easily generalize to new goals or distinct tasks, even during execution.
Recent large language model based approaches can allow for more open-ended planning but often require heavy prompt engineering or domain-specific pretrained models.
We propose a simple framework that achieves interactive task planning with language models.
- Score: 97.86399877812923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An interactive robot framework accomplishes long-horizon task planning and
can easily generalize to new goals or distinct tasks, even during execution.
However, most traditional methods require predefined module design, which makes
it hard to generalize to different goals. Recent large language model based
approaches can allow for more open-ended planning but often require heavy
prompt engineering or domain-specific pretrained models. To tackle this, we
propose a simple framework that achieves interactive task planning with
language models. Our system incorporates both high-level planning and low-level
function execution via language. We verify the robustness of our system in
generating novel high-level instructions for unseen objectives and its ease of
adaptation to different tasks by merely substituting the task guidelines,
without the need for additional complex prompt engineering. Furthermore, when
the user sends a new request, our system is able to replan accordingly with
precision based on the new request, task guidelines and previously executed
steps. Please check more details on our https://wuphilipp.github.io/itp_site
and https://youtu.be/TrKLuyv26_g.
Related papers
- Plan-Seq-Learn: Language Model Guided RL for Solving Long Horizon Robotics Tasks [50.27313829438866]
Plan-Seq-Learn (PSL) is a modular approach that uses motion planning to bridge the gap between abstract language and learned low-level control.
PSL achieves success rates of over 85%, out-performing language-based, classical, and end-to-end approaches.
arXiv Detail & Related papers (2024-05-02T17:59:31Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - Generalizable Long-Horizon Manipulations with Large Language Models [91.740084601715]
This work introduces a framework harnessing the capabilities of Large Language Models (LLMs) to generate primitive task conditions for generalizable long-horizon manipulations.
We create a challenging robotic manipulation task suite based on Pybullet for long-horizon task evaluation.
arXiv Detail & Related papers (2023-10-03T17:59:46Z) - AutoTAMP: Autoregressive Task and Motion Planning with LLMs as Translators and Checkers [20.857692296678632]
For effective human-robot interaction, robots need to understand, plan, and execute complex, long-horizon tasks.
Recent advances in large language models have shown promise for translating natural language into robot action sequences.
We show that our approach outperforms several methods using LLMs as planners in complex task domains.
arXiv Detail & Related papers (2023-06-10T21:58:29Z) - Robot Task Planning Based on Large Language Model Representing Knowledge
with Directed Graph Structures [2.3698227130544547]
We propose a task planning method that combines human expertise with an LLM and have designed an LLM prompt template, Think_Net_Prompt.
We further propose a method to progressively decompose tasks and generate a task tree to reduce the planning volume for each task.
arXiv Detail & Related papers (2023-06-08T13:10:00Z) - Improving Generalization in Task-oriented Dialogues with Workflows and
Action Plans [1.0499611180329804]
Task-oriented dialogue is difficult in part because it involves understanding user intent, collecting information from the user, executing API calls, and generating fluent responses.
We show that large pre-trained language models can be fine-tuned end-to-end to create multi-step task-oriented dialogue agents.
Our experiments confirm that this approach alone cannot reliably perform new multi-step tasks that are unseen during training.
arXiv Detail & Related papers (2023-06-02T17:54:36Z) - PlaSma: Making Small Language Models Better Procedural Knowledge Models for (Counterfactual) Planning [77.03847056008598]
PlaSma is a novel two-pronged approach to endow small language models with procedural knowledge and (constrained) language planning capabilities.
We develop symbolic procedural knowledge distillation to enhance the commonsense knowledge in small language models and an inference-time algorithm to facilitate more structured and accurate reasoning.
arXiv Detail & Related papers (2023-05-31T00:55:40Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
Large language models (LLMs) can be used to score potential next actions during task planning.
We present a programmatic LLM prompt structure that enables plan generation functional across situated environments.
arXiv Detail & Related papers (2022-09-22T20:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.