Robot Task Planning Based on Large Language Model Representing Knowledge
with Directed Graph Structures
- URL: http://arxiv.org/abs/2306.05171v1
- Date: Thu, 8 Jun 2023 13:10:00 GMT
- Title: Robot Task Planning Based on Large Language Model Representing Knowledge
with Directed Graph Structures
- Authors: Yue Zhen, Sheng Bi, Lu Xing-tong, Pan Wei-qin, Shi Hai-peng, Chen
Zi-rui, Fang Yi-shu
- Abstract summary: We propose a task planning method that combines human expertise with an LLM and have designed an LLM prompt template, Think_Net_Prompt.
We further propose a method to progressively decompose tasks and generate a task tree to reduce the planning volume for each task.
- Score: 2.3698227130544547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional robot task planning methods face challenges when dealing with
highly unstructured environments and complex tasks. We propose a task planning
method that combines human expertise with an LLM and have designed an LLM
prompt template, Think_Net_Prompt, with stronger expressive power to represent
structured professional knowledge. We further propose a method to progressively
decompose tasks and generate a task tree to reduce the planning volume for each
task, and we have designed a strategy to decouple robot task planning. By
dividing different planning entities and separating the task from the actual
machine binding process, the task planning process becomes more flexible.
Research results show that our method performs well in handling specified code
formats, understanding the relationship between tasks and subtasks, and
extracting parameters from text descriptions. However, there are also problems
such as limited complexity of task logic handling, ambiguity in the quantity of
parts and the precise location of assembly. Improving the precision of task
description and cognitive structure can bring certain improvements.
https://github.com/NOMIzy/Think_Net_Prompt
Related papers
- Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
We introduce CodePlan, a framework that generates and follows textcode-form plans -- pseudocode that outlines high-level, structured reasoning processes.
CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks.
It achieves a 25.1% relative improvement compared with directly generating responses.
arXiv Detail & Related papers (2024-09-19T04:13:58Z) - Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy [8.180994118420053]
Long-horizon planning is hindered by challenges such as uncertainty accumulation, computational complexity, delayed rewards and incomplete information.
This work proposes an approach to exploit the task hierarchy from human instructions to facilitate multi-robot planning.
arXiv Detail & Related papers (2024-08-15T14:46:13Z) - Learning Top-k Subtask Planning Tree based on Discriminative Representation Pre-training for Decision Making [9.302910360945042]
Planning with prior knowledge extracted from complicated real-world tasks is crucial for humans to make accurate decisions.
We introduce a multiple-encoder and individual-predictor regime to learn task-essential representations from sufficient data for simple subtasks.
We also use the attention mechanism to generate a top-k subtask planning tree, which customizes subtask execution plans in guiding complex decisions on unseen tasks.
arXiv Detail & Related papers (2023-12-18T09:00:31Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
We introduce As-Needed Decomposition and Planning for complex Tasks (ADaPT)
ADaPT explicitly plans and decomposes complex sub-tasks as-needed, when the Large Language Models is unable to execute them.
Our results demonstrate that ADaPT substantially outperforms established strong baselines.
arXiv Detail & Related papers (2023-11-08T17:59:15Z) - Interactive Task Planning with Language Models [97.86399877812923]
An interactive robot framework accomplishes long-horizon task planning and can easily generalize to new goals or distinct tasks, even during execution.
Recent large language model based approaches can allow for more open-ended planning but often require heavy prompt engineering or domain-specific pretrained models.
We propose a simple framework that achieves interactive task planning with language models.
arXiv Detail & Related papers (2023-10-16T17:59:12Z) - Decomposed Prompting: A Modular Approach for Solving Complex Tasks [55.42850359286304]
We propose Decomposed Prompting to solve complex tasks by decomposing them (via prompting) into simpler sub-tasks.
This modular structure allows each prompt to be optimized for its specific sub-task.
We show that the flexibility and modularity of Decomposed Prompting allows it to outperform prior work on few-shot prompting.
arXiv Detail & Related papers (2022-10-05T17:28:20Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - Task Scoping: Generating Task-Specific Abstractions for Planning [19.411900372400183]
Planning to solve any specific task using an open-scope world model is computationally intractable.
We propose task scoping: a method that exploits knowledge of the initial condition, goal condition, and transition-dynamics structure of a task.
We prove that task scoping never deletes relevant factors or actions, characterize its computational complexity, and characterize the planning problems for which it is especially useful.
arXiv Detail & Related papers (2020-10-17T21:19:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.