Enhancing Trustworthiness in ML-Based Network Intrusion Detection with Uncertainty Quantification
- URL: http://arxiv.org/abs/2310.10655v2
- Date: Tue, 9 Apr 2024 07:50:13 GMT
- Title: Enhancing Trustworthiness in ML-Based Network Intrusion Detection with Uncertainty Quantification
- Authors: Jacopo Talpini, Fabio Sartori, Marco Savi,
- Abstract summary: Intrusion Detection Systems (IDSs) are security devices designed to identify and mitigate attacks to modern networks.
Data-driven approaches based on Machine Learning (ML) have gained more and more popularity for executing the classification tasks.
However, typical ML models adopted for this purpose do not properly take into account the uncertainty associated with their prediction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution of Internet and its related communication technologies have consistently increased the risk of cyber-attacks. In this context, a crucial role is played by Intrusion Detection Systems (IDSs), which are security devices designed to identify and mitigate attacks to modern networks. Data-driven approaches based on Machine Learning (ML) have gained more and more popularity for executing the classification tasks required by signature-based IDSs. However, typical ML models adopted for this purpose do not properly take into account the uncertainty associated with their prediction. This poses significant challenges, as they tend to produce misleadingly high classification scores for both misclassified inputs and inputs belonging to unknown classes (e.g. novel attacks), limiting the trustworthiness of existing ML-based solutions. In this paper, we argue that ML-based IDSs should always provide accurate uncertainty quantification to avoid overconfident predictions. In fact, an uncertainty-aware classification would be beneficial to enhance closed-set classification performance, would make it possible to carry out Active Learning, and would help recognize inputs of unknown classes as truly unknowns, unlocking open-set classification capabilities and Out-of-Distribution (OoD) detection. To verify it, we compare various ML-based methods for uncertainty quantification and for open-set classification, either specifically designed for or tailored to the domain of network intrusion detection. Moreover, we develop a custom model based on Bayesian Neural Networks to ensure reliable uncertainty estimates and improve the OoD detection capabilities, thus showing how proper uncertainty quantification can be exploited to significantly enhance the trustworthiness of ML-based IDSs.
Related papers
- Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Explainability through uncertainty: Trustworthy decision-making with neural networks [1.104960878651584]
Uncertainty is a key feature of any machine learning model.
It is particularly important in neural networks, which tend to be overconfident.
Uncertainty as XAI improves the model's trustworthiness in downstream decision-making tasks.
arXiv Detail & Related papers (2024-03-15T10:22:48Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Using machine learning (ML) and deep learning (DL) models in Intrusion Detection Systems has led to a trust deficit due to their non-transparent decision-making.
This paper introduces a novel Explainable IDS approach, called X-CBA, that leverages the structural advantages of Graph Neural Networks (GNNs) to effectively process network traffic data.
Our approach achieves high accuracy with 99.47% in threat detection and provides clear, actionable explanations of its analytical outcomes.
arXiv Detail & Related papers (2024-02-01T18:29:16Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Performance evaluation of Machine learning algorithms for Intrusion Detection System [0.40964539027092917]
This paper focuses on intrusion detection systems (IDSs) analysis using Machine Learning (ML) techniques.
We analyze the KDD CUP-'99' intrusion detection dataset used for training and validating ML models.
arXiv Detail & Related papers (2023-10-01T06:35:37Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Inter-Domain Fusion for Enhanced Intrusion Detection in Power Systems:
An Evidence Theoretic and Meta-Heuristic Approach [0.0]
False alerts due to/ compromised IDS in ICS networks can lead to severe economic and operational damage.
This work presents an approach for reducing false alerts in CPS power systems by dealing with uncertainty without prior distribution of alerts.
arXiv Detail & Related papers (2021-11-20T00:05:39Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
Quantifying or at least upper-bounding uncertainties is vital for safety-critical systems such as autonomous vehicles.
We evaluate uncertainty realism -- a strict quality criterion -- with a Mahalanobis distance-based statistical test.
We adopt it to the automotive domain and show that it significantly improves uncertainty realism compared to a plain encoder-decoder model.
arXiv Detail & Related papers (2021-01-08T11:56:12Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.