Smart OMVI: Obfuscated Malware Variant Identification using a novel
dataset
- URL: http://arxiv.org/abs/2310.10670v1
- Date: Sun, 24 Sep 2023 16:28:35 GMT
- Title: Smart OMVI: Obfuscated Malware Variant Identification using a novel
dataset
- Authors: Suleman Qamar
- Abstract summary: This dataset comprises 40 distinct malware families having 21924 samples.
It incorporates obfuscation techniques that mimic the strategies employed by malware creators.
The purpose of this dataset is to provide a more realistic and representative environment for evaluating the effectiveness of malware analysis techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cybersecurity has become a significant issue in the digital era as a result
of the growth in everyday computer use. Cybercriminals now engage in more than
virus distribution and computer hacking. Cyberwarfare has developed as a result
because it has become a threat to a nation's survival. Malware analysis serves
as the first line of defence against an attack and is a significant component
of cybercrime. Every day, malware attacks target a large number of computer
users, businesses, and governmental agencies, causing billions of dollars in
losses. Malware may evade multiple AV software with a very minor, cunning tweak
made by its designers, despite the fact that security experts have a variety of
tools at their disposal to identify it. To address this challenge, a new
dataset called the Obfuscated Malware Dataset (OMD) has been developed. This
dataset comprises 40 distinct malware families having 21924 samples, and it
incorporates obfuscation techniques that mimic the strategies employed by
malware creators to make their malware variations different from the original
samples. The purpose of this dataset is to provide a more realistic and
representative environment for evaluating the effectiveness of malware analysis
techniques. Different conventional machine learning algorithms including but
not limited to Support Vector Machine (SVM), Random Forrest (RF), Extreme
Gradient Boosting (XGBOOST) etc are applied and contrasted. The results
demonstrated that XGBoost outperformed the other algorithms, achieving an
accuracy of f 82%, precision of 88%, recall of 80%, and an F1-Score of 83%.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Obfuscated Memory Malware Detection [2.0618817976970103]
We show how Artificial Intelligence and Machine learning can be used to detect and mitigate these cyber-attacks induced by malware in specific obfuscated malware.
We propose a multi-class classification model to detect the three types of obfuscated malware with an accuracy of 89.07% using the Classic Random Forest algorithm.
arXiv Detail & Related papers (2024-08-23T06:39:15Z) - Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Crypters are pieces of software whose main goal is to transform a target binary so it can avoid detection from Anti Viruses (AVs) applications.
The crypter-as-a-service model has gained popularity, in response to the increased sophistication of detection mechanisms.
This paper provides the first study on an online underground market dedicated to crypter-as-a-service.
arXiv Detail & Related papers (2024-05-20T08:35:39Z) - Obfuscated Malware Detection: Investigating Real-world Scenarios through Memory Analysis [0.0]
We propose a simple and cost-effective obfuscated malware detection system through memory dump analysis.
The study focuses on the CIC-MalMem-2022 dataset, designed to simulate real-world scenarios.
We evaluate the effectiveness of machine learning algorithms, such as decision trees, ensemble methods, and neural networks, in detecting obfuscated malware within memory dumps.
arXiv Detail & Related papers (2024-04-03T00:13:23Z) - MalDICT: Benchmark Datasets on Malware Behaviors, Platforms, Exploitation, and Packers [44.700094741798445]
Existing research on malware classification focuses almost exclusively on two tasks: distinguishing between malicious and benign files and classifying malware by family.
We have identified four tasks which are under-represented in prior work: classification by behaviors that malware exhibit, platforms that malware run on, vulnerabilities that malware exploit, and packers that malware are packed with.
We are releasing benchmark datasets for each of these four classification tasks, tagged using ClarAVy and comprising nearly 5.5 million malicious files in total.
arXiv Detail & Related papers (2023-10-18T04:36:26Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Self-Supervised Vision Transformers for Malware Detection [0.0]
This paper presents SHERLOCK, a self-supervision based deep learning model to detect malware based on the Vision Transformer (ViT) architecture.
Our proposed model is also able to outperform state-of-the-art techniques for multi-class malware classification of types and family with macro-F1 score of.497 and.491 respectively.
arXiv Detail & Related papers (2022-08-15T07:49:58Z) - Single-Shot Black-Box Adversarial Attacks Against Malware Detectors: A
Causal Language Model Approach [5.2424255020469595]
Adversarial Malware example Generation aims to generate evasive malware variants.
Black-box method has gained more attention than white-box methods.
In this study, we show that a novel DL-based causal language model enables single-shot evasion.
arXiv Detail & Related papers (2021-12-03T05:29:50Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
We propose an explainability-guided and model-agnostic testing framework for robustness of malware detectors.
We then use this framework to test several state-of-the-art malware detectors' abilities to detect manipulated malware.
Our findings shed light on the limitations of current malware detectors, as well as how they can be improved.
arXiv Detail & Related papers (2021-11-19T08:02:38Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Classifying Malware Images with Convolutional Neural Network Models [2.363388546004777]
In this paper, we use several convolutional neural network (CNN) models for static malware classification.
The Inception V3 model achieves a test accuracy of 99.24%, which is better than the accuracy of 98.52% achieved by the current state-of-the-art system.
arXiv Detail & Related papers (2020-10-30T07:39:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.