論文の概要: Application-layer Characterization and Traffic Analysis for Encrypted QUIC Transport Protocol
- arxiv url: http://arxiv.org/abs/2310.10676v1
- Date: Tue, 10 Oct 2023 20:09:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 02:13:39.638201
- Title: Application-layer Characterization and Traffic Analysis for Encrypted QUIC Transport Protocol
- Title(参考訳): 暗号化QUICトランスポートプロトコルのアプリケーション層特性とトラフィック解析
- Authors: Qianqian Zhang, Chi-Jiun Su,
- Abstract要約: 本稿では,QUICパケットを復号することなくアプリケーションレベルのトラフィック特性を推定する新しいルールベースの手法を提案する。
提案アルゴリズムは,そのサイズ,タイミング,方向情報に基づいて,関連するネットワークトラフィックを解析する。
推論されたHTTP属性は、アプリケーション層サービスのQoEを評価し、暗号化QUIC接続内のトラフィック分類のためのサービスカテゴリを特定するために使用することができる。
- 参考スコア(独自算出の注目度): 14.40132345175898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quick UDP Internet Connection (QUIC) is an emerging end-to-end encrypted, transport-layer protocol, which has been increasingly adopted by popular web services to improve communication security and quality of experience (QoE) towards end-users. However, this tendency makes the traffic analysis more challenging, given the limited information in the QUIC packet header and full encryption on the payload. To address this challenge, a novel rule-based approach is proposed to estimate the application-level traffic attributes without decrypting QUIC packets. Based on the size, timing, and direction information, our proposed algorithm analyzes the associated network traffic to infer the identity of each HTTP request and response pair, as well as the multiplexing feature in each QUIC connection. The inferred HTTP attributes can be used to evaluate the QoE of application-layer services and identify the service categories for traffic classification in the encrypted QUIC connections.
- Abstract(参考訳): Quick UDP Internet Connection (QUIC)は、エンド・ツー・エンドの暗号化されたトランスポート層プロトコルである。
しかし、QUICパケットヘッダの限られた情報とペイロードの完全な暗号化を考えると、この傾向はトラフィック分析をより困難にしている。
この課題に対処するために、QUICパケットを復号することなくアプリケーションレベルのトラフィック属性を推定する新しいルールベースのアプローチを提案する。
提案アルゴリズムは,そのサイズ,タイミング,方向情報に基づいて,関連するネットワークトラフィックを分析し,各HTTP要求と応答ペアの同一性を推定し,QUIC接続内の多重化機能を推定する。
推論されたHTTP属性は、アプリケーション層サービスのQoEを評価し、暗号化QUIC接続内のトラフィック分類のためのサービスカテゴリを特定するために使用することができる。
関連論文リスト
- Estimating the Number of HTTP/3 Responses in QUIC Using Deep Learning [7.795761092358769]
本稿では、所定のQUIC接続におけるHTTP/3応答数をオブザーバによって推定する新しい方法を提案する。
提案手法はQUIC接続トレースを一連の画像に変換し,機械学習(ML)モデルを用いて応答数を予測する。
このスキームは、既知のWebサーバ設定と未知のWebサーバ設定の両方において、最大97%の累積精度と、未知のQUICトレースにおけるレスポンスの総数を推定する92%の精度を達成する。
論文 参考訳(メタデータ) (2024-10-08T15:40:22Z) - Exploring QUIC Dynamics: A Large-Scale Dataset for Encrypted Traffic Analysis [7.795761092358769]
VisQUICは10万以上のラベル付きQUICトレースと対応するSSLキーのデータセットである。
トレースの視覚的表現を生成することにより、高度な機械学習(ML)アプリケーションと、暗号化されたQUICトラフィックの詳細な分析を容易にする。
我々のデータセットはQUICとHTTP/3プロトコルに関する包括的な研究を可能にし、暗号化されたトラフィック分析ツールの開発を支援する。
論文 参考訳(メタデータ) (2024-09-30T10:50:12Z) - Lens: A Foundation Model for Network Traffic [19.3652490585798]
Lensは、T5アーキテクチャを活用して、大規模な未ラベルデータから事前訓練された表現を学習するネットワークトラフィックの基礎モデルである。
Masked Span Prediction(MSP)、Packet Order Prediction(POP)、Homologous Traffic Prediction(HTP)の3つの異なるタスクを組み合わせた新しい損失を設計する。
論文 参考訳(メタデータ) (2024-02-06T02:45:13Z) - Matching Game for Optimized Association in Quantum Communication
Networks [65.16483325184237]
本稿では,量子スイッチのためのスワップスタブルな要求-QSアソシエーションアルゴリズムを提案する。
サービスされた要求の割合で、ほぼ最適(5%)のパフォーマンスを達成する。
QCNのサイズが大きくなると、スケーラビリティが向上し、ほぼ最適性能を維持することが示されている。
論文 参考訳(メタデータ) (2023-05-22T03:39:18Z) - Optimization of Image Transmission in a Cooperative Semantic
Communication Networks [68.2233384648671]
画像伝送のためのセマンティック通信フレームワークを開発した。
サーバは、セマンティックコミュニケーション技術を用いて、画像の集合を協調的にユーザへ送信する。
抽出した意味情報と原画像との相関関係を測定するために,マルチモーダル・メトリックを提案する。
論文 参考訳(メタデータ) (2023-01-01T15:59:13Z) - Utilizing Background Knowledge for Robust Reasoning over Traffic
Situations [63.45021731775964]
我々は、インテリジェントトランスポーテーションの補完的な研究側面である交通理解に焦点を当てる。
本研究は,豊富なコモンセンス知識を前提として,テキストベースの手法とデータセットを対象とする。
交通状況に対するゼロショットQAには3つの知識駆動アプローチを採用しています。
論文 参考訳(メタデータ) (2022-12-04T09:17:24Z) - Multi-view Multi-label Anomaly Network Traffic Classification based on
MLP-Mixer Neural Network [55.21501819988941]
畳み込みニューラルネットワーク(CNN)に基づく既存のネットワークトラフィック分類は、グローバルな情報関連を無視しながら、トラフィックデータの局所的なパターンを強調することが多い。
本稿では,エンドツーエンドのネットワークトラフィック分類手法を提案する。
論文 参考訳(メタデータ) (2022-10-30T01:52:05Z) - Federated Semi-Supervised Classification of Multimedia Flows for 3D
Networks [0.16799377888527683]
交通分類は、交通の整形、ネットワークスライシング、品質・オブ・サービス(QoS)管理に不可欠である。
3Dネットワークは、さまざまなレベルの異常検出を保証できる複数のルートを提供する。
本稿では,ネットワークトラフィックを半教師付き方式で分類するために,協調的特徴選択と特徴量削減学習手法を提案する。
論文 参考訳(メタデータ) (2022-05-01T20:18:07Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - FENXI: Deep-learning Traffic Analytics at the Edge [69.34903175081284]
本稿では,TPUを利用して複雑な解析を行うシステムであるFENXIを提案する。
FENXIは、さまざまな粒度で動作するオペレーションとトラフィック分析を分離する。
分析の結果,FENXIは限られた資源しか必要とせず,転送ラインレートのトラヒック処理を継続できることがわかった。
論文 参考訳(メタデータ) (2021-05-25T08:02:44Z) - Website fingerprinting on early QUIC traffic [12.18618920843956]
交通分析の観点から,GQUIC,IQUIC,HTTPSのWFP攻撃に対する脆弱性について検討した。
GQUICはGQUIC、IQUIC、HTTPSの中で最も脆弱であるが、IQUICはHTTPSよりも脆弱である。
論文 参考訳(メタデータ) (2021-01-28T08:53:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。