論文の概要: Large language models can replicate cross-cultural differences in personality
- arxiv url: http://arxiv.org/abs/2310.10679v2
- Date: Tue, 17 Sep 2024 10:47:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-09-18 22:50:44.591102
- Title: Large language models can replicate cross-cultural differences in personality
- Title(参考訳): 大規模言語モデルは人格の異文化間差異を再現できる
- Authors: Paweł Niszczota, Mateusz Janczak, Michał Misiak,
- Abstract要約: 我々は大規模な実験を行い、GPT-4がビッグファイブの異文化間差異を再現できるかどうかを検証した。
私たちはアメリカと韓国を文化のペアとして使いました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We use a large-scale experiment (N=8000) to determine whether GPT-4 can replicate cross-cultural differences in the Big Five, measured using the Ten-Item Personality Inventory. We used the US and South Korea as the cultural pair, given that prior research suggests substantial personality differences between people from these two countries. We manipulated the target of the simulation (US vs. Korean), the language of the inventory (English vs. Korean), and the language model (GPT-4 vs. GPT-3.5). Our results show that GPT-4 replicated the cross-cultural differences for each factor. However, mean ratings had an upward bias and exhibited lower variation than in the human samples, as well as lower structural validity. We provide preliminary evidence that LLMs can aid cross-cultural researchers and practitioners.
- Abstract(参考訳): 我々は大規模な実験(N=8000)を用いて、GPT-4がビッグファイブの異文化間差異を再現できるかどうかをテンアイテムパーソナリティ・インベントリで測定した。
米国と韓国を文化の対として用いたのは、この2カ国の人々の人格差がかなり大きいことが、以前の研究で示唆されていたからです。
シミュレーションの対象(米国対韓国)、在庫の言語(英対韓国)、言語モデル(GPT-4対GPT-3.5)を操作した。
以上の結果から, GPT-4は各因子の異文化間差異を再現した。
しかし, 平均評価は上向きバイアスがあり, 人体試料よりも低変動を示し, 構造的妥当性も低かった。
LLMが異文化研究者や実践者に役立つという予備的証拠を提供する。
関連論文リスト
- CAReDiO: Cultural Alignment of LLM via Representativeness and Distinctiveness Guided Data Optimization [50.90288681622152]
大規模言語モデル(LLM)は、より深く様々な地域における人間の生活に統合される。
既存のアプローチは、文化固有のコーパスを微調整することで、文化的に整合したLCMを開発する。
本稿では,新しい文化データ構築フレームワークであるCAReDiOを紹介する。
論文 参考訳(メタデータ) (2025-04-09T13:40:13Z) - When Tom Eats Kimchi: Evaluating Cultural Bias of Multimodal Large Language Models in Cultural Mixture Contexts [15.78054683369659]
異文化間バイアスベンチマークであるMixCuBeを導入し、5カ国と4民族の要素について検討する。
以上の結果から,MLLMは高資源培養において高い精度と低感度を達成できることが判明した。
GPT-4oは、全体として最高のパフォーマンスモデルであり、低リソース文化における原文化と摂動文化の精度の最大58%の違いを示している。
論文 参考訳(メタデータ) (2025-03-21T03:50:05Z) - Multilingual != Multicultural: Evaluating Gaps Between Multilingual Capabilities and Cultural Alignment in LLMs [2.5212698425008377]
大規模言語モデル(LLM)は、グローバル言語全体でますます能力を高めつつある。
しかし、言語間のコミュニケーション能力が必ずしも適切な文化的表現に変換されるとは限らない。
GoogleのGemmaモデルとOpenAIのターボシリーズの2つのモデルを比較します。
言語能力と文化的アライメントの間には、一貫した関係は見つからない。
論文 参考訳(メタデータ) (2025-02-23T11:02:41Z) - CulturalBench: a Robust, Diverse and Challenging Benchmark on Measuring the (Lack of) Cultural Knowledge of LLMs [75.82306181299153]
文化ベンチについて紹介する: 文化的知識を評価するための1,227の人文的・人文的な質問である。
同じ質問を共有しながら異なる質問をするCulturalBench-EasyとCulturalBench-Hardの2つの設定でモデルを評価する。
人間のパフォーマンス(92.6%の精度)と比較して、カルチャーベンチ・ハードは、最もパフォーマンスの良いモデル(GPT-4o)が61.5%、最悪のモデル(Llama3-8b)が21.4%であるフロンティアのLLMにとってより難しい。
論文 参考訳(メタデータ) (2024-10-03T17:04:31Z) - See It from My Perspective: Diagnosing the Western Cultural Bias of Large Vision-Language Models in Image Understanding [78.88461026069862]
視覚言語モデル(VLM)は、多くの言語における画像に関するクエリに応答することができる。
我々は、画像理解における西洋の偏見を実証し、局所化する新しい研究を提案する。
論文 参考訳(メタデータ) (2024-06-17T15:49:51Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
本稿では,LLMを利用した文化データ収集のためのマルチエージェント通信フレームワークであるCultureParkを紹介する。
人間の信念、規範、習慣をカプセル化した高品質な異文化対話を生成する。
我々はこれらのモデルを,コンテンツモデレーション,文化的アライメント,文化教育という3つの下流課題にまたがって評価する。
論文 参考訳(メタデータ) (2024-05-24T01:49:02Z) - CultureLLM: Incorporating Cultural Differences into Large Language Models [36.66184989869121]
CultureLLMは、大きな言語モデルに文化的差異を組み込むためのコスト効率の良いソリューションである。
我々は、リッチで低リソースな言語をカバーする9つの文化に対して、文化固有のLLMと1つの統一モデル(CultureLLM-One)を微調整する。
我々の人間による研究は、生成されたサンプルが元のサンプルと意味的に等価であることを示している。
論文 参考訳(メタデータ) (2024-02-09T04:02:43Z) - Human vs. LMMs: Exploring the Discrepancy in Emoji Interpretation and Usage in Digital Communication [68.40865217231695]
本研究は,ヒト型絵文字の複製におけるGPT-4Vの挙動について検討した。
この結果は、人間の解釈の主観的な性質から、人間とGPT-4Vの行動に明確な相違があることを示唆している。
論文 参考訳(メタデータ) (2024-01-16T08:56:52Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
本稿では,大規模言語モデル(LLM)における文化的優位性について述べる。
LLMは、ユーザーが非英語で尋ねるときに期待する文化とは無関係な、不適切な英語文化関連の回答を提供することが多い。
論文 参考訳(メタデータ) (2023-10-19T05:38:23Z) - Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions [10.415002561977655]
本研究は,ホフステデの文化次元の枠組みを用いて文化的アライメントを定量化する文化アライメントテスト (Hoftede's CAT) を提案する。
我々は、米国、中国、アラブ諸国といった地域の文化的側面に対して、大規模言語モデル(LLM)を定量的に評価する。
その結果, LLMの文化的アライメントを定量化し, 説明的文化的次元におけるLCMの差異を明らかにすることができた。
論文 参考訳(メタデータ) (2023-08-25T14:50:13Z) - Comparing Biases and the Impact of Multilingual Training across Multiple
Languages [70.84047257764405]
ダウンストリーム感情分析タスクにおいて,イタリア語,中国語,英語,ヘブライ語,スペイン語のバイアス分析を行う。
我々は、既存の感情バイアスのテンプレートを、人種、宗教、国籍、性別の4つの属性で、イタリア語、中国語、ヘブライ語、スペイン語に適応させる。
以上の結果から,各言語の文化に支配的な集団の嗜好など,バイアス表現の類似性を明らかにした。
論文 参考訳(メタデータ) (2023-05-18T18:15:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。