論文の概要: MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design
- arxiv url: http://arxiv.org/abs/2310.10732v1
- Date: Mon, 16 Oct 2023 18:00:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 19:26:40.376238
- Title: MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design
- Title(参考訳): MOFDiff: 金属-有機フレームワーク設計のための粗粒拡散
- Authors: Xiang Fu, Tian Xie, Andrew S. Rosen, Tommi Jaakkola, Jake Smith
- Abstract要約: 金属-有機フレームワーク(MOF)は、ガス貯蔵や炭素捕獲といった応用に非常に関心がある。
CGMOF構造を生成する粗粒拡散モデルMOFDiffを提案する。
有効かつ斬新なMOF構造の生成能力と優れたMOF材料の設計における有効性を評価する。
- 参考スコア(独自算出の注目度): 4.819734936375677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metal-organic frameworks (MOFs) are of immense interest in applications such
as gas storage and carbon capture due to their exceptional porosity and tunable
chemistry. Their modular nature has enabled the use of template-based methods
to generate hypothetical MOFs by combining molecular building blocks in
accordance with known network topologies. However, the ability of these methods
to identify top-performing MOFs is often hindered by the limited diversity of
the resulting chemical space. In this work, we propose MOFDiff: a
coarse-grained (CG) diffusion model that generates CG MOF structures through a
denoising diffusion process over the coordinates and identities of the building
blocks. The all-atom MOF structure is then determined through a novel assembly
algorithm. Equivariant graph neural networks are used for the diffusion model
to respect the permutational and roto-translational symmetries. We
comprehensively evaluate our model's capability to generate valid and novel MOF
structures and its effectiveness in designing outstanding MOF materials for
carbon capture applications with molecular simulations.
- Abstract(参考訳): 金属-有機系フレームワーク(mofs)は、その特異な気孔性と可変化学性のため、ガス貯蔵や炭素捕獲などの用途に非常に興味を持っている。
そのモジュラー性により、既知のネットワークトポロジーに従って分子構造ブロックを組み合わせることで、仮説MOFを生成するテンプレートベースの手法が利用可能になった。
しかし、これらの手法が最高性能のMOFを識別する能力は、しばしば化学空間の限られた多様性によって妨げられる。
そこで本研究では, 粗粒拡散モデルMOFDiffを提案し, 建物ブロックの座標と同一性に対するデノナイズ拡散過程を通じてCG MOF構造を生成する。
その後、全原子MOF構造は、新しい組立アルゴリズムによって決定される。
等変グラフニューラルネットワークは、置換およびロート遷移対称性を尊重する拡散モデルとして用いられる。
分子シミュレーションを用いた炭素捕獲用MOF材料の設計において, 有効かつ新規なMOF構造を生成するモデルの有効性を総合的に評価した。
関連論文リスト
- DiffMS: Diffusion Generation of Molecules Conditioned on Mass Spectra [60.39311767532607]
DiffMSは式制限エンコーダ-デコーダ生成ネットワークである。
我々は、潜伏埋め込みと分子構造を橋渡しする頑健なデコーダを開発する。
実験の結果、DiffMS は $textitde novo$ 分子生成で既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2025-02-13T18:29:48Z) - Graph neural network framework for energy mapping of hybrid monte-carlo molecular dynamics simulations of Medium Entropy Alloys [0.0]
本研究では, 中エントロピー合金(MEAs)のモデリングのためのグラフベース表現を提案する。
ハイブリッドモンテカルロ分子動力学(MC/MD)シミュレーションは、MEAの様々な熱処理温度で熱的に安定な構造を実現するために用いられる。
これらのシミュレーションはダンプファイルとポテンシャルエネルギーラベルを生成し、原子配置のグラフ表現を構築するのに使用される。
これらのグラフは、システムのポテンシャルエネルギーを予測するためのグラフ畳み込みニューラルネットワーク(GCNN)ベースのMLモデルの入力として機能する。
論文 参考訳(メタデータ) (2024-11-20T19:22:40Z) - MOFFlow: Flow Matching for Structure Prediction of Metal-Organic Frameworks [42.61784133509237]
金属-有機フレームワーク(英: Metal-organic framework、MOF)は、炭素捕獲や薬物の放出といった多くの分野で有望な応用を持つ結晶材料のクラスである。
ab initio計算や深い生成モデルを含む既存のアプローチは、単位セル内の多くの原子のためにMOF構造が複雑になるのに苦労している。
我々はMOF構造予測に適した最初の深部生成モデルMOFFlowを紹介する。
論文 参考訳(メタデータ) (2024-10-07T13:51:58Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
構造に基づく薬物設計のための拡散型フラグメントワイド自己回帰生成モデル(SBDD)を提案する。
我々はまず,分子の局所構造の整合性を保持する共形モチーフという新しい分子組立戦略を設計する。
次に、タンパク質-リガンド複合体とSE(3)等価な畳み込みネットワークとの相互作用をエンコードし、拡散モデルを用いて分子モチーフ・バイ・モチーフを生成する。
論文 参考訳(メタデータ) (2024-04-02T14:44:02Z) - A generative artificial intelligence framework based on a molecular
diffusion model for the design of metal-organic frameworks for carbon capture [3.7693836475281297]
GHP-MOFassembleは、CO2容量と合成可能なリンカーを備えたMOFの合理的かつ迅速な設計のための生成人工知能フレームワークである。
GHP-MOFassembleは、一意性、合成可能性、構造的妥当性のためにAI生成のMOFをスクリーンし、検証する。
仮説MOFデータセットの96.9%以上の2$m mol/g$以上のCO2容量を持つAI生成MOFの上位6つを提示する。
論文 参考訳(メタデータ) (2023-06-14T18:32:26Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - MOFormer: Self-Supervised Transformer model for Metal-Organic Framework
Property Prediction [7.367477168940467]
金属有機フレームワーク(英: Metal-Organic Frameworks、MOFs)は、エネルギー貯蔵、脱塩、ガス貯蔵、ガス分離などの用途に使用できる多孔質材料である。
特定のアプリケーションに最適なMOFを見つけるには、膨大な数の候補を効率よく正確に探索する必要がある。
そこで本研究では,MOFの特性予測のために,MOFormerと呼ばれるトランスフォーマーモデルに基づく構造に依存しないディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-10-25T17:29:42Z) - Building Open Knowledge Graph for Metal-Organic Frameworks (MOF-KG):
Challenges and Case Studies [63.61566811532431]
金属有機フレームワーク(MOF)は、ガス貯蔵、分子分離、化学センシング、結晶および薬物のデリバリーといった応用に革命をもたらす大きな可能性を持っている。
ケンブリッジ構造データベース(CSD)は10,636個のMOF結晶を報告しており、これには114,373個のMOF構造が含まれる。
本稿では,MOF予測,発見,合成を容易にする知識グラフ手法の活用に向けた取り組みについて述べる。
論文 参考訳(メタデータ) (2022-07-10T16:41:11Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) は連続正規化フロー(CNF)ファミリーにおける新しい生成モデルのクラスである
MFは、訓練中にODEソルバを介して呼び出しやバックプロパゲートを必要としない。
一般曲面からのサンプリングにおけるフローモデルの利用を初めて実演する。
論文 参考訳(メタデータ) (2021-08-18T09:00:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。