論文の概要: Fake News in Sheep's Clothing: Robust Fake News Detection Against LLM-Empowered Style Attacks
- arxiv url: http://arxiv.org/abs/2310.10830v2
- Date: Tue, 20 Aug 2024 17:28:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 20:51:22.410906
- Title: Fake News in Sheep's Clothing: Robust Fake News Detection Against LLM-Empowered Style Attacks
- Title(参考訳): Fake News in Sheep's Clothing: Robust Fake News Detection against LLM-Empowered Style Attacks
- Authors: Jiaying Wu, Jiafeng Guo, Bryan Hooi,
- Abstract要約: SheepDogは、ニュースの正確性を決定する際に、スタイルよりもコンテンツを優先する、スタイルに反する偽ニュース検出ツールだ。
SheepDog はこのレジリエンスを,(1) LLM を利用したニュースリフレーミング,(2) 異なるスタイルに対応する記事のカスタマイズによる学習プロセスへのスタイル多様性の注入,(2) スタイルの異なるリフレーミング間で一貫した妥当性予測を保証するスタイル非依存のトレーニング,(3) LLM からコンテンツ中心のガイドラインを抽出して偽ニュースを抽出するコンテンツ中心の属性を通じて達成する。
- 参考スコア(独自算出の注目度): 60.14025705964573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is commonly perceived that fake news and real news exhibit distinct writing styles, such as the use of sensationalist versus objective language. However, we emphasize that style-related features can also be exploited for style-based attacks. Notably, the advent of powerful Large Language Models (LLMs) has empowered malicious actors to mimic the style of trustworthy news sources, doing so swiftly, cost-effectively, and at scale. Our analysis reveals that LLM-camouflaged fake news content significantly undermines the effectiveness of state-of-the-art text-based detectors (up to 38% decrease in F1 Score), implying a severe vulnerability to stylistic variations. To address this, we introduce SheepDog, a style-robust fake news detector that prioritizes content over style in determining news veracity. SheepDog achieves this resilience through (1) LLM-empowered news reframings that inject style diversity into the training process by customizing articles to match different styles; (2) a style-agnostic training scheme that ensures consistent veracity predictions across style-diverse reframings; and (3) content-focused veracity attributions that distill content-centric guidelines from LLMs for debunking fake news, offering supplementary cues and potential intepretability that assist veracity prediction. Extensive experiments on three real-world benchmarks demonstrate SheepDog's style robustness and adaptability to various backbones.
- Abstract(参考訳): 偽ニュースや実ニュースは、センセーショナルな言語と客観的な言語の使用など、異なる書き方を示していると一般的に認識されている。
しかし、スタイルベースの攻撃にも、スタイル関連の機能が活用できることを強調した。
特に、強力な大規模言語モデル(LLM)の出現により、悪意あるアクターは信頼できるニュースソースのスタイルを模倣し、迅速に、費用対効果、大規模に実行できるようになった。
解析の結果,LLMをカモフラージュした偽ニュースコンテンツは,最先端のテキストベース検出器(F1スコアの最大38%低下)の有効性を著しく損なうことが判明した。
この問題に対処するために,我々は,ニュースの正確性を決定する上で,スタイルよりもコンテンツの方が優先されるスタイルの偽ニュース検知器であるSheepDogを紹介した。
SheepDog はこのレジリエンスを,(1) LLM を利用したニューズリフレーミング,(2) 異なるスタイルに合わせて記事をカスタマイズしてスタイルの多様性を注入する,(2) スタイルの異なるリフレーミング間で一貫した妥当性予測を保証する,スタイルに依存しないトレーニングスキーム,(3) 偽ニュースをデバッキングするために LLM からコンテンツ中心のガイドラインを抽出するコンテンツ中心の正確性アトリビュート, 補助的手がかりの提供, 潜在的な不定性予測を支援する, などを通じて実現している。
3つの実世界のベンチマークに関する大規模な実験は、SheepDogのスタイルの堅牢性と様々なバックボーンへの適応性を示している。
関連論文リスト
- Adversarial Style Augmentation via Large Language Model for Robust Fake News Detection [18.998947450697337]
本研究は, 偽ニュース検知器の訓練を行うために, 対向型拡張AdStyleを提案する。
我々のモデルの主要なメカニズムは、LLMを慎重に使用して、多種多様なスタイル変換攻撃プロンプトを自動生成することである。
実験により、我々の拡張戦略は、フェイクニュースベンチマークデータセットでテストした場合の堅牢性と検出性能を改善することが示された。
論文 参考訳(メタデータ) (2024-06-17T07:00:41Z) - Exploring the Deceptive Power of LLM-Generated Fake News: A Study of Real-World Detection Challenges [21.425647152424585]
条件付き変分オートエンコーダライズプロンプト(VLPrompt)と呼ばれる強力なフェイクニュース攻撃手法を提案する。
現行のメソッドとは異なり、VLPromptはコンテキストコヒーレンスを維持しながら追加のデータ収集を不要にする。
さまざまな検出方法や新しい人間の研究指標を含む実験を行い,その性能をデータセット上で評価した。
論文 参考訳(メタデータ) (2024-03-27T04:39:18Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - fakenewsbr: A Fake News Detection Platform for Brazilian Portuguese [0.6775616141339018]
本稿ではブラジルポルトガル語における偽ニュースの検出に関する総合的研究について述べる。
本稿では、TF-IDFやWord2Vecといった自然言語処理技術を活用する機械学習ベースのアプローチを提案する。
ユーザフレンドリーなWebプラットフォームである fakenewsbr.com を開発し,ニュース記事の妥当性の検証を容易にする。
論文 参考訳(メタデータ) (2023-09-20T04:10:03Z) - Fake News Detectors are Biased against Texts Generated by Large Language
Models [39.36284616311687]
フェイクニュースの拡散は、信頼を弱め、社会への脅威を訴える重要な課題として浮上している。
本稿では,人間の書き起こしとLLM生成の両方の誤情報を含むシナリオにおいて,偽ニュース検知器を評価するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-09-15T18:04:40Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
入力テキストにおける意味保存的変化がモデルを誤解させる可能性があることを示す。
また、誤情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAについても紹介する。
我々の実験結果によると、現代の大規模言語モデルは、以前のより小さなソリューションよりも攻撃に対して脆弱であることが多い。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。